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Preface

Any student working with the celebrated Feynman Lectures will find a chapter in
it with the intriguing title Electromagnetic Mass [2, Chap. 28]. In a way, it looks
rather out of date, and it would be easy to skate over it, or even just skip it. And
yet all bound state particles we know of today have electromagnetic mass. It is just
that we approach the question differently. Today we have multiplets of mesons or
baryons, and we have colour symmetry, and broken flavour symmetry, and we think
about mass and energy through Hamiltonians. This book is an invitation to look at
all these modern ideas with the help of an old light.

Everything here is quite standard theory, in fact, classical electromagnetism for
the main part. The reader would be expected to have encountered the theory of elec-
tromagnetism before, but there is a review of all the necessary results, and nothing
sophisticated about the calculations. The reader could be any student of physics, or
any physicist, but someone who would like to know more about inertia, and the clas-
sical precursor of mass renormalisation in quantum field theory. In short, someone
who feels it worthwhile to ask why F = ma.

A spatially extended charge distribution will exert a force on itself if you try
to accelerate it, and that force will lie along the direction of acceleration. This is
not obvious. The classic case considered by the pioneers of relativity theory is a
spherical shell of charge, but the calculations are not easy. In this book, I replace
this by the simplest possible spatially extended charge distribution, viz., a dumbbell
with an electrical charge at each end.

Some of the calculations may be original. Four cases are considered: velocity and
acceleration parallel to one another and normal to the dumbbell axis, then parallel
to the dumbbell axis; and then the two cases where the velocity and acceleration are
normal to one another and the velocity is either normal to the system axis or parallel
to it. Of course, the latter two cases involve rotation of the system about a center of
rotation that is not located in the dumbbell. The calculations with standard classical
electromagnetic theory are rather ugly and involve a certain level of approximation,
so the contribution of this self-force to the inertia of the system would not appear to
be a simple consequence of the theory.
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Actually, any small charged object will exert this kind of inertial effect on itself
whenever it is accelerated in any way relative to an inertial frame. Dirac showed this
indirectly in 1938 by considering the electromagnetic energy–momentum tensor of
such an object. He was on his way to devising the notorious Lorentz–Dirac equation
of motion for accelerating charges, which takes into account their electromagnetic
radiation. His calculations turned up a term proportional to the reciprocal of the spa-
tial dimensions of the object. Or rather, since he was considering a point charge, the
term in question was proportional to the reciprocal of the spatial dimensions of a
worldtube he had constructed to contain the charge worldline, and whose radius he
intended to set to zero at the end of the calculation. In this book, we note that, if the
particle had had some spatial dimensions, he would have escaped the obvious pro-
blem that awaited him. But he was lucky. The thing that was about to go to infinity
had exactly the right form to be absorbed into the mass times acceleration part of
his equation, whereupon he could forget it. This is the miracle of renormalisation.

Like many other students of quantum field theory in the early 1980s, I found
renormalisation mysterious. Disappointing by its messiness, but intriguing by its
success. It seemed that one should be able to find a new quantum field theory that
went straight to the right answers. Looking back at Dirac’s problem, we find that
the need for classical mass renormalisation can be avoided simply by denying point
particles. But it is much simpler to say than to do! Once our particles have spatial
extent, they become much more difficult to model. The intention here is not to hide
that fact, nor to suggest that this hypothesis is a panacea for all ills. The point particle
approximation has been extraordinarily successful. But one of the themes of this
book is that we might understand physics better by knowing what can be done with
spatially extended particles.

The electromagnetic bootstrap force described above would not be the only one
affecting a spatially extended particle. If any of its components were sources for
the strong force, for example, there would be a strong bootstrap force. Indeed, any
interaction between its components would lead to a bootstrap effect. And what is
more, this idea is actually a standard part of particle physics, although it appears in
another guise, the one provided by relativistic quantum physics.

The reader should be quite clear that, although the basic ideas here are not new,
and although there is not much about quantum theory in the book, this is not a
denial of quantum theory, nor of any of the other wonderful hypotheses that make
up modern physics. I include a chapter on elementary particle physics which reviews
the state of the art with respect to inertial mass in a suitably simple way. I sketch
the Higgs mechanism which is generally considered to cause the inertia of the truly
elementary particles like quarks and leptons, but also the way we try to understand
the inertial masses of the vast majority of particles, the mesons and baryons, today
considered to be bound states of quarks and antiquarks, hence spatially extended.

Given the ubiquity of bootstrap contributions to inertia, there is an obvious pos-
sibility here, if the Higgs particle should continue to be elusive.
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EDM energy-derived electromagnetic mass
EM electromagnetic
FW Fermi–Walker transport
GR general relativity
GWS Glashow–Weinberg–Salaam theory
HOS hyperplane of simultaneity
ICIF instantaneously comoving inertial frame
ICIO instantaneously comoving inertial observer
LD Lorentz–Dirac equation
MDM momentum-derived electromagnetic mass
MEME minimal extension of Maxwell’s equations to curved spacetime
NG Newtonian gravitation
QCD quantum chromodynamics
QED quantum electrodynamics
QM quantum mechanics
SE semi-Euclidean frame or coordinates
SEP strong equivalence principle
SFDM self-force-derived electromagnetic mass
SHGF static homogeneous gravitational field
SO Schwarzschild observer
SR special relativity
WEP weak equivalence principle
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Chapter 1
Introduction and Guide

This book considers the dichotomy between point particle and spatially extended
particle, and aims to show that interesting things can be discovered by treating the
difficult problems posed by the latter. It is not an argument against the extraordinary
successes of the point particle approach as an approximation, but a reminder that it
is likely only to be an approximation.

Any spatially extended charge distribution will exert a force on itself when ac-
celerated. In order to calculate this self-force, one needs to use Maxwell’s theory
of electromagnetism. The relevant results are reviewed in Chap. 2. But it would be
difficult and unwise for someone with no knowledge of Maxwell’s theory to take
this as an introduction, even though it is fairly complete.

Chapter 3 goes straight to the heart of the matter. In fact it takes us back to
the time when the pioneers of relativity theory were beginning to grasp the full
implications of Maxwell’s theory for our understanding of the world. They were
trying to model the electron by a charged spherical shell, and discovered that it
would oppose being accelerated, by exerting a bootstrap force. Its EM fields held
energy and momentum, and this fact corroborated the idea that all its inertia might
be due to the bootstrap effect. At the very least, part of its inertial mass could be
attributed to its being a source of EM fields. And oddly, that contribution to its
inertial mass had to increase as a function of its speed v according to a factor γ(v) :=
(1− v2/c2)−1/2, where c is the speed of light.

But the EM self-force of the charge shell does not only contribute to its inertia.
There are other terms. If one expands the force as a power series in the radius a of
the shell, the inertial term goes as 1/a, but there are terms of order a0, a, and higher.
The term going as a0, i.e., independent of the system dimensions, is what powers
the EM radiation of any accelerated charge, while the higher order terms may be
negligible if a is small. In Sect. 3.6, there is a brief discussion of Dirac’s attempt
to include the radiation reaction term in the Lorentz force law that describes the
motion of a charged particle through EM fields.

Chapter 4 takes us momentarily into the higher realms of general relativity to
discuss what this theory has to tell us about inertial mass. Very little knowledge of
GR is actually needed, but some understanding of the founding experimental ob-
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2 1 Introduction and Guide

servation that the passive gravitational mass of a particle, measure of the extent to
which it will be affected by gravity, is actually exactly equal to its inertial mass. The
main result discussed is that any self-force contribution to a particle’s inertial mass
will automatically contribute equally to its passive gravitational mass. A simplifica-
tion of Newton’s second law is proposed to account for this. The idea that Einstein’s
equations for the curvature of spacetime might explain inertia is opposed, despite a
well known result according to which, under certain other assumptions, some small
particles may follow geodesics, because one of the assumptions is effectively iden-
tified as being the relativistic extension of Newton’s second law.

This chapter ends with a discussion of the idea that particles somehow acquire
inertial mass through the overall distribution of matter and energy throughout the
Universe. It is argued that GR does not implement such an idea, and further that
Brans and Dicke’s adjustment of GR goes no further toward explaining inertia, be-
cause it still basically assumes a geodesic principle.

Having examined and rejected these alternative approaches to inertia, we return
to the self-force. One of the problems with it is the difficulty in actually carrying
out calculations. In this respect, the charge shell is not ideal for revealing the advan-
tages of the idea. In Chaps. 5–9, we thus examine what must be the simplest possible
extended charge distribution, namely a pair of point charges of the same sign sepa-
rated by a distance d, using the standard results of Chap. 2. In a way, it may seem
paradoxical to oppose the idea of point particles by replacing them with two point
particles, but it does provide a clear way of demonstrating what can come out of
a spatially extended charge distribution, and it makes certain calculations tractable
that would be hopeless otherwise.

In Chap. 5, we consider the energy in the EM fields of this charge dumbbell when
it is stationary in some inertial frame, and then the momentum in the EM fields when
it moves with some constant velocity relative to that frame. In the latter case, we
contrast motion along the system axis and normal to it. It has long been known that
there is a discrepancy between the EM mass when it is derived from the energy and
when it is derived from the momentum of the EM fields, and this feature is exposed
in detail for later analysis. We contrast the cases where the charges at each end of
the dumbbell have the same sign and different signs, the latter being used to model a
neutral particle. Finally, we briefly discuss the way momentum enters the EM fields
when such a system is accelerated.

Chapters 6–9 are concerned with the EM force the dumbbell exerts on itself when
accelerated in various ways:

1. Linear acceleration perpendicular to the system axis.
2. Linear acceleration along the system axis.
3. Circular orbit with velocity perpendicular to the system axis.
4. Circular orbit with velocity along the system axis.

It is found that the self-force always opposes acceleration, even in cases where it is
really not obvious that it will do so, e.g., when the dumbbell is orbiting a center of
rotation in different ways. These calculations apply the Lienard–Wiechert solution
to Maxwell’s equations and are quite involved, but they are given in detail, since
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this may be the first time such results have been shown explicitly. The reader is
encouraged to ask what feature of Maxwell’s theory leads to this simple outcome.

The connection with classical mass renormalisation is spelt out in detail. In the
case where the system is accelerated along a straight line normal to its axis, dealt
with in Chap. 6, we also calculate the radiation reaction, and show the consistency
with the standard formulas for radiated EM power. In Chap. 7, where the system
accelerates along its axis, we discuss the problem of relativistic contraction, in pre-
paration for later discussion. When any system has uniform motion relative to an
inertial frame, we expect it to contract spatially in the direction of motion by a factor
of γ−1, but when it is accelerated, we need to think more carefully about dynamical
effects within it. This subject is postponed to its own chapter, under the heading
of rigidity. Chapter 10 takes stock of all the results regarding EM effects in charge
shells and charge dumbbells.

Chapter 11 gives a detailed analysis of the discrepancy between energy-derived
and momentum-derived EM masses, showing exactly why this should be expected
to come about. The solution is simple enough, but there has been much debate about
it, and the idea here is to reject a purely mathematical ploy for getting around the
problem, showing that it is not well motivated physically, at least in the context
where spatially extended particles are taken seriously. This chapter also contains a
great deal of theory that should be useful in getting a better understanding of this
kind of problem.

Chapter 12 faces one of the main complicating factors when dealing with spa-
tially extended objects under acceleration, namely, the problem of their relativistic
contraction. It is shown that the usual assumption made when handling charge shells
is a rigidity assumption, and this is criticised. We also refer to a somewhat contro-
versial paper by Bell [5], in which he tackles the question directly. The whole issue
here is how best to approximate. Calculations with spatially extended objects are
tough.

Chapter 13 reviews the way inertial mass is treated in particle physics today.
Section 13.1 is particularly important. It describes a typical deduction of the rule
of thumb E = mc2, the boldest hypothesis of them all, showing that merely on the
basis of Lorentz symmetry considerations, we then declare that all inertial mass is
energy and all energy is inertial mass. The reader is encouraged to wonder why this
works so well.

We then deal with bound states, from hydrogen, through positronium and quar-
konium, to the mesons and baryons which are today treated as composed of quarks,
antiquarks, and gluons. Several attempts are made to estimate the inertial masses
of mesons and baryons without knowing the masses of their component quarks, or
to estimate the masses of the quarks by measuring certain features of the compo-
sites they make up. The connection is made clear between self-forces and binding
energy contributions to inertia. The penultimate section of this chapter then outlines
the Higgs mechanism, generally expected to explain the masses of truly elemen-
tary particles, while the last section provides an example to show that the Higgs
mechanism is not necessary to obtain electroweak unification through massive in-
termediate vector bosons.



Chapter 2
Some Notions of Electromagnetism

A lot of this book is about electromagnetism, carrying out calculations with rather
standard bits of Maxwell’s theory. This is why we begin with an overview of the
main results used later. The aim is not to produce a textbook account, with complete
proofs and explanations, only to exhibit the sequence of results a reader would need
to know in order to follow the rest and fill in some of the more apposite details.
To help things along, and make it easier for someone to pick up what is required,
the overview given in this chapter is largely based on the account in The Feynman
Lectures on Physics, by Feynman, Leighton, and Sands [1, 2]. The discussion in
these books is remarkable anyway, and strongly recommended to anyone who does
not know it.

2.1 Maxwell’s Equations and Their Solution

We shall write Maxwell’s equations in the form [2, Chap. 21]

∇ ·E =
ρ
ε0

, ∇ ·B = 0 ,

∇×E =−∂B
∂ t

, c2∇×B =
j

ε0
+

∂E
∂ t

,
(2.1)

where E is the electric field, B is the magnetic field, j is the current density, ρ is the
charge density, c is the speed of light in vacuum, and ε0 is a constant.

Because ∇ ·B = 0 and ∇×E =−∂B/∂ t, there is a 3-vector field A and a scalar
field φ such that

E =−∇φ − ∂A
∂ t

, B = ∇×A . (2.2)

Lyle, S.N.: Some Notions of Electromagnetism. Lect. Notes Phys. 796, 5–29 (2010)
DOI 10.1007/978-3-642-04785-5 2 c© Springer-Verlag Berlin Heidelberg 2010



6 2 Some Notions of Electromagnetism

φ and A are called the scalar and vector potential, respectively. Together they form
the 4-potential Aµ = (φ/c,A), a 4-vector under Lorentz transformations (see below)
[2, Chap. 25].

When E and B have the form given in (2.2), the two Maxwell equations that do
not mention the sources ρ and j are automatically satisfied. Then it turns out that,
with one proviso, the other two Maxwell equations take the form

22φ =
ρ
ε0

, 22A =
j

ε0c2 , (2.3)

where 22 is the differential operator

22 :=
1
c2

∂ 2

∂ t2 −∇2 . (2.4)

The proviso here is that one must put a constraint on φ and A, viz.,

∇ ·A =− 1
c2

∂φ
∂ t

. (2.5)

This is possible because several choices of φ and A actually lead to (2.2), something
known as gauge freedom. Then (2.5) is called a gauge condition, in fact the Lorenz
gauge condition. It constrains the potentials somewhat, but not totally. There re-
mains some gauge freedom, i.e., one can simultaneously change A to A′ := A+∇ψ
and φ to φ ′ := φ −∂ψ/∂ t and obtain the same E and B from (2.2), and even main-
tain the condition (2.5) applied now to A′ and φ ′, provided only that ψ satisfies
2ψ ′ = 0.

The great thing about the step from E and B to φ and A is that (2.3) and (2.5) can
be solved by

φ(r0, t0) =
∫ ρ(r1, t0− r01/c)

4πε0r01
dV1 , A(r0, t0) =

∫ j(r1, t0− r01/c)
4πε0c2r01

dV1 , (2.6)

where (r0, t0) is the field point, i.e., the event of spacetime at which we are evaluating
the fields, while the dummy variable r1 in the integral ranges over all values in R3,
and r01 := r0−r1 is the vector from the volume element dV1 to the field point, with
length r01.

The time t+ := t0− r01/c is called the retarded time, somewhat vaguely. It is the
time when there would have had to have been some charge at the integration point
r1 in order for something at the field point to be affected by a field due to that charge
at that integration point. The little diagram in Fig. 2.1 is designed to illustrate this
trivial point, but anyone with any doubts about this is advised to go through the
account in [2] in detail, or consult some other elementary textbook.

One also speaks of the retarded point r+ for a given field point and a given charge
element. In terms appropriate to the special theory of relativity (SR), the retarded
point is the intersection of the past light cone of the field point with the worldline of
the charge element. It is the spatial position of the charge element when it produced
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Field point

•

•

•

(r0, t0)

Position of charge

position of charge

at time t0

C

at time t+
r+ =

|r0 − r+| = c(t0 − t+)

1

Fig. 2.1 A picture to show why the retarded time t+ := t0 − r01/c turns up in the solution to
Maxwell’s equations. The curve denotes the spatial trajectory of a charge element C. The latter
would have had to have been at the retarded point r+ = r1 to affect the field point (r0, t0), because
the distance r01 := |r0− r1| is precisely the distance that light would cover in the time t0− t+

the fields that affect the field point. For given field point and given charge element,
the retarded point is unique.

Note in passing that charge is conserved by any system satisfying Maxwell’s
equations, because they imply

∇ · j =−∂ρ
∂ t

. (2.7)

In integral form, this states that the flux of current out through any closed surface
is equal to minus the rate of change of the amount of charge within the surface.
Together the charge and current densities form the 4-current density jµ = (cρ , j), a
4-vector under Lorentz transformations (see below) [2, Chap. 18].

Note that (2.6) is a very general solution to Maxwell’s equations (2.3), for any
charge distribution with any motion. There are other solutions involving advanced
times, rather than retarded times, and combinations of both, but in the present dis-
cussion, we shall stick with the retarded solutions in (2.6) and the old-fashioned
notion of causality. One then obtains the electric and magnetic fields from (2.2).

2.2 Relativistic Notation

All this can be phrased in terms of four-vectors and other tensors. If we consider
homogeneous coordinates, that is, each with the same physical dimensions,

xµ = (ct,x,y,z) , ∂µ =
∂

∂xµ =
(

∂
∂ (ct)

,
∂
∂x

,
∂
∂y

,
∂
∂ z

)
,

and the Minkowski metric in the form
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ηµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 = ηµν ,

then Aµ = (φ/c,A) is a homogeneous 4-vector under Lorentz transformations [2,
Chap. 25], since φ/c and A have the same physical dimensions, and the Lorenz
gauge constraint (2.5) takes the elegant form

∂µ Aµ = 0 . (2.8)

The charge density ρ and current density j form another homogeneous four-vector
jµ = (cρ, j) [2, Chap. 18], and charge conservation (2.7) assumes the equally elegant
form

∂µ jµ = 0 . (2.9)

The differential operator 22 in (2.4) has the form 22 = ∂µ ∂ µ , and Maxwell’s equa-
tions (2.3) for the potential take the form

22Aµ =
jµ

ε0c2 . (2.10)

Furthermore, if we define

Fµν = ∂µ Aν −∂ν Aµ , (2.11)

where Aµ := ηµν Aν , then (2.2) implies that

Fµν =




0 Ex/c Ey/c Ez/c
−Ex/c 0 −Bz By
−Ey/c Bz 0 −Bx
−Ez/c −By Bx 0


 . (2.12)

This is also physically homogeneous in the sense that each component of the tensor
has the same physical dimensions. The contravariant version is

Fµν := ηµσ ηντ Fστ =




0 −Ex/c −Ey/c −Ez/c
Ex/c 0 −Bz By
Ey/c Bz 0 −Bx
Ez/c −By Bx 0


 . (2.13)

The two Maxwell equations among (2.1) that do not mention the sources ρ and j
take the form

Fµν ,σ +Fσ µ,ν +Fνσ ,µ = 0 . (2.14)

This can also be written
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F[µν ,σ ] = 0 , (2.15)

where the square brackets on indices indicate antisymmetrisation, whence the latter
says that

Fµν ,σ +Fσ µ,ν +Fνσ ,µ −Fνµ ,σ −Fµσ ,ν −Fσν ,µ = 0 ,

and, since Fµν is antisymmetric, this is just the same as (2.14). The two Maxwell
equations mentioning ρ and j take the form

Fµν
,ν =− jµ

ε0c2 . (2.16)

Note. The reader should be warned that this is only one set of conventions for wri-
ting everything in relativistic notation. The Minkowski metric is sometimes the ne-
gative of the form shown here, and it contains a factor of c2 if non-homogeneous
coordinates (t,x,y,z) are chosen. Unfortunately, one encounters many variants, so it
is better to just get used to that.

2.3 Lorentz Force Law

In a certain sense, the Lorentz force law tells us what the electric and magnetic fields
actually do out in the real world when there is a charge there to probe them, because
they give the force that those fields will exert on the charge, viz.,

F = q(E+u×B) ,

where q is the value of the charge in coulombs and u is its 3-velocity. This is a non-
relativistic version. We would like to look here at the Lorentz force law in its special
relativistic formulation. We need the 4-velocity

vµ :=
dxµ

dτ
=

dt
dτ

(c,u) , (2.17)

where the coordinate 3-velocity u in the given inertial frame is defined by

u :=
(

dx
dt

,
dy
dt

,
dz
dt

)
, (2.18)

and the proper time τ by

c2dτ2 = c2dt2−dx2−dy2−dz2 , (2.19)

whence
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(
dτ
dt

)2

= 1− u2

c2 ,
dt
dτ

= γ . (2.20)

defining γ(u) in the usual way. Hence, for the 4-velocity,

vµ = γ(c, u) . (2.21)

In special relativity, the Lorentz force law takes the form

m0
d2xµ

dτ2 = qFµ
ν vν (2.22)

where m0 and q are the particle mass and charge, respectively.
Let us see what these four equations tell us in terms of E and B. The left-hand

side is

m0
d2xµ

dτ2 = m0
dt
dτ

dvµ

dt
= m0γ

dvµ

dt
. (2.23)

On the right-hand side, we have

Fµ
ν vν = γ

(
E ·u/c

E+u×B

)
. (2.24)

Now the Lorentz force equation consists of one vector equation (components i =
1, 2, 3) and one scalar equation (the 0 component), but in fact the scalar equation
follows from the vector equation as we shall see in a moment. The vector equation
states that

m0
d
dt

(γu) = q(E+u×B) (2.25)

This is the usual version of the relativistic Lorentz force law [2, Sect. 26.4]. It can
be written more specifically in the form

d
dt

[
m0

(1−u2/c2)1/2 u
]

= q(E+u×B) . (2.26)

The left-hand side is the coordinate time rate of change of the relativistic 3-
momentum (which has to multiplied by γ to give the spatial components of the
4-force).

Now in special relativity, the 4-force and 4-velocity are not independent. In fact,
they are orthogonal in the Minkowski geometry. Let us see how this relationship
comes out when the 4-force is equated with qFµ

ν vν . The scalar equation requires

m0c
dγ
dt

= qE ·u/c . (2.27)



2.4 Electromagnetic Energy–Momentum Tensor 11

But the vector equation already implies that

qE ·u = m0u· d
dt

(γu) . (2.28)

This is because the magnetic field does no work, i.e., the magnetic force u×B is
orthogonal to the velocity u (in 3-space). This in turn means that

qE ·u = m0u2 dγ
dt

+ γm0u·u̇ . (2.29)

The right-hand side can be simplified here using

dγ
dt

=
u·u̇
c2 γ3 , (2.30)

whence the vector equation in the form (2.29) does indeed imply that

qE ·u = m0c2 dγ
dt

.

In fact, we have the following identity:

u2 dγ
dt

+ γu·u̇ = c2 dγ
dt

, (2.31)

which is precisely the relation which says that the 4-force and 4-velocity are ortho-
gonal (a completely general result).

The point of the last short discussion is just to make it clear that the whole content
of the relativistic relation (2.22) is expressed by the 3-vector relation (2.25).

2.4 Electromagnetic Energy–Momentum Tensor

The definition we shall use is

T µν =−ε0c2
(

Fµ
σ Fσν +

1
4

Fστ Fστ ηµν
)

, (2.32)

with the above definition for Fµν . If we work out the components of T µν in terms
of the electric and magnetic fields, we obtain

T µν = ε0



−1

2
(E2 + c2B2) −cE×B

−cE×B EE+ c2BB− 1
2
(E2 + c2B2)I


 . (2.33)

The 3×3 matrix in the bottom right is
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T := ε0

[
EE+ c2BB− 1

2
(E2 + c2B2)I

]
, (2.34)

where

EE :=




Ex
Ey
Ez


(

Ex Ey Ez
)

=




E2
x ExEy ExEz

EyEx E2
y EyEz

EzEx EzEy E2
z


 , (2.35)

and similarly for BB.
We can now bring in the energy density u and its flow S with the same conven-

tions as Feynman in [2, Sect. 27.5]. Hence,

u =
ε0

2
E ·E+

ε0c2

2
B ·B =

ε0

2
(E2 + c2B2) (2.36)

and

S := ε0c2E×B . (2.37)

We now have

T 00 =−u , T 0k =−1
c

Sk . (2.38)

The vector quantity S is the energy flux of the field, i.e., the flow of energy per unit
time across a unit area perpendicular to the flow. It is known as the Poynting vector.
One can obtain the field momentum density (momentum per unit volume) from it in
the form [2, Sect. 27.6]

g :=
1
c2 S = ε0E×B , (2.39)

a formula that will be put to use later.
The above quantities u and S are chosen because they satisfy the constraint of

energy conservation, viz.,

∂u
∂ t

=−∇ ·S−E · j ,

which expresses the idea that the total field energy in a given volume decreases
either because field energy flows out of the volume (the term ∇ ·S) or because it
loses energy to matter by doing work on it (the term E · j). In relativistic language,
this becomes T 0ν

,ν = F0ν jν .
It is important to see that the field does work on each unit volume of matter at

the rate E · j. The force on a particle is F = q(E+v×B), and the rate of doing work
is F ·v = qE ·v. If there are N particles per unit volume, the rate of doing work per
unit volume is NqE ·v, and Nqv is of course what we have called j. The quantity
E · j is also called the Lorentz force density.
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With the definition (2.32) for T µν , Maxwell’s equations in the relativistic form
(2.14) and (2.16) in fact imply

T µν
,ν = Fµν jν (2.40)

It is instructive to see this derivation. We begin with Maxwell’s equations in the
form

Fµν
,ν =− jµ

ε0c2 , F[µν ,σ ] = 0 . (2.41)

Now, from

T µν =−ε0c2
(

Fµ
σ Fσν +

1
4

Fστ Fστ ηµν
)

, (2.42)

we have

T µν
,ν =−ε0c2

(
Fµ

σ ,ν Fσν +Fµ
σ Fσν

,ν +
1
4

Fστ,ν Fστ ηµν +
1
4

Fστ Fστ
,ν ηµν

)
.

(2.43)

Now note that, using the Maxwell equation in (2.41) that refers to the sources, the
second term on the right-hand side is

second term =−ε0c2Fµ
σ Fσν

,ν = Fµ
σ jσ , (2.44)

and this is the 4-force density. One can then show that the other terms in (2.43) sum
to zero, i.e.,

Fµ
σ ,ν Fσν +

1
4

Fστ,ν Fστ ηµν +
1
4

Fστ Fστ
,ν ηµν = 0 ,

using the antisymmetry of Fστ and the source-free Maxwell equations in (2.41).
Our conclusion here is therefore

T µν
,ν = Fµν jν , (2.45)

as claimed. In words, Maxwell’s equations ensure that the divergence T µν
,ν of

the electromagnetic energy–momentum tensor is equal to the electromagnetic force
density on the charge distribution according to the Lorentz force law. We conclude
that the electromagnetic energy–momentum tensor is conserved at a point if and
only if the electromagnetic force density on the charges there is zero. One situation
where this happens is if there are no charges!

Consider for a moment how this analysis would fit in with a charged dust model
[8, pp. 104–118], where one would have a total energy–momentum tensor of the
form
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Tchargeddust =
m
q

ρu⊗u+Tem ,

where u is the 4-velocity field of the dust, m and q are the mass and charge of each
dust particle, respectively, and ρ is the proper charge density distribution. When
the mass part of the tensor (proportional to u⊗u here) is included, conservation of
the total tensor says two separate things. The component of the resulting equation
parallel to the 4-velocity field u gives conservation of mass, whilst the component
orthogonal to the 4-velocity field says that charges follow non-geodesic curves as
given by the Lorentz force law.

Of course, in most situations, other forces will be involved, i.e., the distribution
could not be treated as a charged dust. However, considering this model for a mo-
ment, let us just ask what has changed by adding the mass term. In fact, when we
obtained (2.45) above, we concluded that the electromagnetic energy–momentum
tensor alone is conserved at a point if and only if the electromagnetic force den-
sity on the charges there is zero. Of course, this never happens unless there are no
charges there! In that case, we can define a field energy density and momentum flow,
and interpret the resulting equation. When there are charges, we have to equate the
right-hand side of (2.45) with the missing bit of the global conservation equation,
including the mass terms, and this delivers the Lorentz force law dictating how the
charged dust must flow in the given fields.

As a final point regarding the quantities u and S, it is important to note that
there is some ambiguity here, because there are other definitions that lead to the
right relations. However, they are more complex [2, Sect. 27.4]. There is also some
strangeness in the way energy is conserved. A good discussion and examples can be
found in [2, Chap. 27].

2.5 Solution for Point Charge with Arbitrary Motion

One case that interests us in this book is a point charge with arbitrary motion. The
notion of point charge is clearly idealistic and one of the themes here is that there
are no point particles. However, this does not mean that the point charge is not a
useful mathematical approximation. It is in this sense that it is presented here.

2.5.1 Fields Due to a Single Point Charge

Four-Current Vector

The first step is to obtain the 4-vector current describing such a source. As usual
in the relativistic context, we begin by arbitrarily choosing some inertial frame to
describe things in. The trajectory of the source is described in Minkowski spacetime
by x(τ), where τ is the proper time. The trajectory can also be parametrised by



2.5 Solution for Point Charge with Arbitrary Motion 15

t = x0(τ)/c. Then the 4-vector current density is

jµ(y, t) = q
dxµ

dt
δ 3(y−x(τ)

)∣∣∣
ct=x0(τ)

, (2.46)

where δ 3 is the 3D Dirac delta distribution.
It is worth being quite clear about this formula. In a simplistic model of a charge

distribution,

j(y) = ρ0(y)V (y) , (2.47)

where

V (y) :=
dx
dτ

= γ(v)(c,v) , v := |v| , γ(v) := (1− v2/c2)−1/2 ,

is the 4-velocity field of the charge, with τ the proper time of the charge, and ρ0(y)
is the local charge density as measured at each point in an instantaneous rest frame
of the charge. Now dt = γ(v)dτ , so in the simplistic model (2.47),

jµ(y) = ρ0γ(v)
dxµ

dt
.

But ρ0γ(v) = ρ , the local charge density as measured from our chosen inertial frame,
so our formula (2.46) will be right if the term

qδ 3(y−x(τ)
)∣∣∣

ct=x0(τ)
(2.48)

corresponds to the charge density distribution as measured in that inertial frame.
Notice that the condition ct = x0(τ) says what τ is supposed to be, given t, and not
the other way round. Then the delta function is a point distribution located at the
space point x(τ), the point of the trajectory corresponding to the given t, so it is
intuitively reasonable to suggest that (2.48) is good model for the charge density
distribution of our point charge with worldline x(τ).

Note that the distribution (2.46) can be rewritten in covariant form:

jµ(y, t) = q
∫

dτ
dxµ

dτ
δ 4(y− x(τ)

)
, (2.49)

as can be seen by changing the variable to t and doing the integration over this
variable.

Since the charge density distribution in space is supposed to be

ρ =
j0(y, t)

c
= qδ 3(y−x(τ)

)
,

at any instant of time t, the total charge at that time is
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∫

d3y j0(y, t) = q ,

which is constant in time. We ought to check that ∂µ jµ = 0, as required by (2.9).
We need to see why the flux of current out of any closed surface is equal to the rate
of change of charge contained within it. The current density is

qv
(
x(τ)

)
δ 3(y−x(τ)

)∣∣∣
ct=x0(τ)

= vρ ,

and this is intuitively sufficient.

Potential Equation

The equation for the 4-vector potential is (2.10), viz.,

2Aµ =
jµ

ε0c2 ,

and we will maintain the Lorenz gauge, so that

Aµ
,µ = 0 .

We use the retarded Green function

Gret(x) =
c

2π
θ(+x0)δ (x2)

to solve for Aµ , where θ is the step function, equal to zero for negative values of the
argument and +1 for positive values. This has the property that

22Gret = δ 4(x) .

The solution for the 4-potential is thus

Aµ(y) =
1

2πε0c

∫
d4z θ(y0− z0)δ

(
(y− z)2) jµ(z) , (2.50)

by the standard property of Green functions. We should check that this satisfies the
Lorenz gauge condition. Taking the relativistic divergence, the operator ∂µ can be
transferred to the 4-current inside the integral, and this time charge conservation
implies the Lorenz gauge condition.

Then, inserting our 4-current density (2.49) into (2.50) and carrying out the inte-
gral over z using the 4D delta function from (2.49), we obtain

Aµ(y) =
q

2πε0c

∫ ∞

−∞
dτ θ

(
y0− x0(τ)

)
δ
([

y− x(τ)
]2

)
ẋµ(τ) , (2.51)

where the dot on xµ indicates the proper time derivative. This formula clearly exhi-
bits the fact that our Aµ depends only on the worldline at earlier times.
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Retarded Points

As mentioned earlier, for all y, there exists a unique x+ = x(τ+) on the trajectory of
the charged particle, such that

(y− x+)2 = 0 , x0
+ < y0 .

This point is referred to as the retarded point. In relativistic jargon, it is the intersec-
tion of the worldline with the past null cone through y (see Fig. 2.2).

Let us understand the significance of these points via the delta function approach.
Consider first a standard piece of distribution theory. Suppose we have

I =
∫

dτh(τ)δ
(
g(τ)

)
,

where g(τ) =
[
y− x(τ)

]2 only has the one zero for y0 > x0(τ), namely at τ = τ+.
Expanding out

g(τ) = g(τ+ + τ− τ+)≈ g(τ+)+(τ− τ+)g′(τ+) ,

the first term is zero and the second is supposed small (for τ close to τ+). Conse-
quently,

I =
∫

dτh(τ)δ
(
(τ− τ+)g′(τ+)

)
,

and we can now use

g′(τ) = 2
[
y− x(τ)

] · ẋ(τ)

Fig. 2.2 A spacetime picture of the retarded point, to be contrasted with the space picture in
Fig. 2.1

Field point y
•

•

Time

Space

Retarded point x+

Past null cone of y

Charge worldline

Future null cone of x+
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to deduce

I =
h(τ+)∣∣g′(τ+)

∣∣ .

The modulus comes in from the variable change

τ ′ := g′(τ+)τ .

However, it is unnecessary, because it can be shown that

ẋ+ · (y− x+) > 0 ,

by observing that ẋ+ is timelike, with ẋ0
+ > 0, and y− x+ is null, with y0− x0

+ > 0.

Lienard–Wiechert Retarded Potential

The above study of retarded points can be applied to the potential (2.51) we obtained
earlier. The result is the Lienard–Wiechert retarded potential

Aµ
ret(y) =

q
4πε0c

ẋµ
+

ẋ+ · (y− x+)
. (2.52)

This is the relativistic generalisation of the Coulomb potential. The above derivation
displays the power of the distribution approach using the step function and Dirac
delta. A longer but much more physical derivation can be found in [2, Chap. 21],
and is strongly recommended.

We would like to write this in more familiar terms. Define r+ := y− x+, the
vector from the retarded point to the field point (recalling that the field point is
associated with a unique retarded point). Define also

v+ =
dx
dt

∣∣∣∣
τ+

,

the 3-velocity of the charge at the retarded point associated with the field point.
We observe that

y− x+ = (y0− x0
+, r+)

is null, and since y0 > x0
+,

y0− x0
+ = |r+|= r+ .

Furthermore,
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ẋ+ =
dx
dτ

∣∣∣∣
τ+

=
dx
dt

∣∣∣∣
τ+

dt
dτ

,

and the derivative dt/dτ will cancel in the ratio of terms.
Finally, we obtain the equations

A0
ret(y) =

q
4πε0c(r+− r+·v+/c)

, Aret(y) =
qv+

4πε0c2(r+− r+·v+/c)
(2.53)

Retrieving the Coulomb Potential

Choose the frame in which

ẋµ
+ = (1, 0, 0, 0) ,

namely, the instantaneous rest frame of the source charge when it was at the retarded
point. Then v+ = 0. In this frame,

φret = cA0
ret(y) =

q
4πε0r+

, Aret(y) = 0 ,

where r+ is the distance between the test point y and the retarded point related to y.
Notice that the velocity of our frame depends on the field point, because it is equal to
the velocity of the charge at the retarded point for that field point. We cannot say that
all effects due to acceleration of the source charge disappear everywhere in space
in this frame, not even instantaneously, but we can say that the scalar potential φ
goes as 1/r+, and not as the reciprocal of the distance to the point where the charge
is now. (The word ‘now’ refers to simultaneity in whatever inertial frame we have
selected at the outset.)

Electromagnetic Fields

The electromagnetic fields due to the charge can now be calculated, using the rela-
tions (2.2) on p. 5, viz.,

E =−c∇A0− ∂A
∂ t

, B = ∇×A .

This deduction will be sketched here because heavy use will be made of the resulting
formulas for E and B later on, and because the kind of calculation arising here
illustrates something about the physics.

First for the notation, we drop the subscript indicating that we are talking about
the retarded solutions, and stick with the notation yµ = (y0,y) for the (homoge-
neous) coordinates of the field point and xµ(t+) for the event coinciding with the
charge at the appropriate retarded time t+ for the given field point. The retarded dis-
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placement vector from the charge at the appropriate retarded time to the field point
is then denoted by r+ := y− x(t+), as in the discussion of the Lienard–Wiechert
potential above.

This immediately reminds us that the key thing about t+, or indeed x+ := x(t+),
r+, and v+, is that they are functions of the field point. If we are to carry out the
derivatives in

4πε0

q
E =−∇

1
r+− r+·v+/c

− ∂
∂y0

v+

c(r+− r+·v+/c)
, (2.54)

then first of all, we need to find the partial derivatives of t+ with respect to yµ . This
is the point about the physics just mentioned: everything here hinges on the retarded
time.

So the key relation here is the one defining the retarded time for the given field
point, viz.,

r+ =
∣∣y−x(t+)

∣∣ = y0− ct+ ,

which can also be written explicitly in the form

[
y1− x1(t+)

]2
+

[
y2− x2(t+)

]2
+

[
y3− x3(t+)

]2
= (y0− ct+)2 . (2.55)

Taking partial derivatives of this relation with respect to yµ , we soon arrive at

∂ t+
∂y0 =

r+

c(r+− r+·v+/c)
, ∇t+ =− r+

c(r+− r+·v+/c)
. (2.56)

It is then a simple matter to obtain

∂r+

∂y0 =− r+v+

c(r+− r+·v+/c)
,

∂ r+

∂y0 =− r+·v+

c(r+− r+·v+/c)
, (2.57)

∂ r j
+

∂yi = δ j
i +

ri
+v j

+

c(r+− r+·v+/c)
, i, j ∈ {

1,2,3
}

, (2.58)

∇r+ =
r+

r+− r+·v+/c
, (2.59)

and

∂v+

∂y0 =
r+a+

c(r+− r+·v+/c)
,

∂v j
+

∂yi =− ri
+a j

+

c(r+− r+·v+/c)
. (2.60)

Now with a few applications of the Leibniz and chain rules and a certain amount of
book-keeping, (2.54) leads to the result
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E =
q

4πε0

(
r+− r+v+

c

)(
1− v2

+

c2

)
+

r+

c2 ×
[(

r+− r+v+

c

)
× dv

dt

∣∣∣∣
t=t+

]

(
r+− r+·v+

c

)3 (2.61)

while the relation

B = ∇×A = ∇× qv+

4πε0c2(r+− r+·v+/c)

implies

B =
r+×E

cr+
(2.62)

2.5.2 Larmor Formula for Radiated Power

We said in Sect. 2.4 that the Poynting vector ε0c2E×B determines the flux of energy
in the EM fields, i.e., the flow of energy per unit time across a unit area perpendicular
to the flow [2, Chap. 27]. In the case of a point charge source, we can find the flux
of energy across a sphere S centred on the retarded point, all points on such a sphere
having the same retarded point, namely the centre of S. Taking r as the vector from
the common retarded point, and using dS = rrdΩ ,

dE

dt
= ε0c2

∫

S
dS·E×B = ε0c

∫

S
dΩ(r×E)2 > 0 .

An approximation can be made in the case where the source charge has a small
velocity. The result will be the well known Larmor formula for radiation by an
accelerating charge.

Both E and B contain terms in 1/r2 contributing only at short distances, and
terms in 1/r which are called radiative terms. We shall keep only the latter here.
Then, by (2.61) and (2.62), respectively, dropping terms in v/c and dropping the
subscript + that indicates that all quantities are evaluated relative to the retarded
time,

Erad =
q

4πε0c2r3

[
r×

(
r×dv

dt

)]
,

and

Brad =− q
4πε0c3r2 r×dv

dt
.

Making this small velocity approximation, the radiated power is
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dE

dt
=

q2

(4π)2ε0c3

∫ dΩ
r2

(
r×dv

dt

)2

.

Choosing a polar axis instantaneously parallel to the 3-acceleration of the source
charge, and denoting by θ the angle between this axis and r,

dE

dt
=

q2

8πε0c3

(
dv
dt

)2 ∫
dθ sin3 θ =

4
3

q2

8πε0c3

(
dv
dt

)2

.

This is the Larmor formula for the power radiated by an accelerating source charge.
The formula can be made to look considerably neater by making the replacement

e2 := q2/4πε0, whence

dE

dt
=

2
3

e2a2

c3 , (2.63)

where a is the magnitude of the acceleration. If q = qe = 1.60206×10−19 C is the
electron charge in coulombs, and since 1/4πε0 = 8.98748×109 in the mks system
of units, it turns out that e is numerically equal to 1.5188×10−14 [1, Chap. 32].

2.5.3 Alternative Formula for Fields Due to a Point Charge

This section is really a digression to advertise an elegant version of (2.61) which
Feynman apparently devised himself as a way of explaining synchrotron radiation
[2, Sect. 21.4]. Indeed, the formula (2.61) for the electric fields due to a point source
charge can be rewritten in a revealing way:

E =− q
4πε0

[
e+

r2
+

+
r+

c
d
dt

(
e+

r2
+

)
+

1
c2

d2

dt2 e+

]
, (2.64)

reverting to the form q for the charge and introducing the unit vector e+ from the
field point to the corresponding retarded point, and the retarded distance r+.

This can be interpreted as follows. Firstly, there is a term which looks just like the
Coulomb field, but relating to the retarded point. Then there is a term in which nature
appears to allow for the fact that the effect is retarded, by means of a correction
equal to the rate of change of the main term multiplied by the retarded time r+/c.
In other words, we add something like the change which has taken place in the
Coulomb term whilst the information is being transferred to the field point. Then
there is yet another term, which turns out to be the one describing radiation, and
which Feynman uses in [1] to derive all the physical effects related to EM radiation,
viz., interference, diffraction, refraction, light scattering, polarisation, and so on.

The magnetic field is just

B =−e+∧E
c

,
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as we found in (2.62), noting that

e+ :=−r+

r+
. (2.65)

Although this section is frankly a digression, the above formulas for E and B illus-
trate something about the classical theory of electromagnetism which supports one
of the main themes in this book. Hopefully, the reader will agree that there is so-
mething thoroughly remarkable about the EM fields produced by a point charge,
which is fully expressed by (2.64), in particular the second term which adjusts for
the retardation in the sense explained, and the third term which clearly brings out
the role of the acceleration in producing radiation effects, among other things (see
below for a further note on that).

It is one of the themes here that Maxwell’s theory, although pre-quantum, is still
extremely rich. Just as it told us to move on to the special theory of relativity, which
in a sense could be said to explain some of the mysteries of uniform velocity motion,
maybe it can also tell us something about accelerating motions and inertia. This is
not to say that one could then ignore what quantum theory has done to improve on
things in QED. The idea put forward here is not to try to do away with that and
promote a rebirth of classical theory, but to look back at the classical theory and ask
whether it cannot still teach us something that could then be recognised also within
a quantum theoretical version of that.

Relating the Two Formulas

This is not done explicitly in [2], but it is not difficult. The best approach is to start
with the new formula and convert it to the original one. This will involve converting
the time derivatives of the direction vector e+ into the notation r+ := y− x+ and
t = y0/c used in Sect. 2.5.1, although preferably with some simplifications such as
dropping the + subscript and adopting the common trick of setting c = 1. Most of
the exercise is straightforward book-keeping of terms generated by the derivatives
and it would not be useful to display all that here. The following is therefore just a
pointer.

From (2.65), we have

de+

dt
=− 1

r+

dr+

dt
+

r+

r2
+

dr+

dt
.

Of course, d/dt corresponds to c∂/∂y0 in the notation of Sect. 2.5.1, and we have
the results (2.57), viz.,

∂r+

∂y0 =− r+v+

c(r+− r+·v+/c)
,

∂ r+

∂y0 =− r+·v+

c(r+− r+·v+/c)
,

which imply easily that
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de+

dt
=

v+− (r+·v+)r+/r2
+

r+− r+·v+/c
=

v+− (e+·v+)e+

r+− r+·v+/c
.

A lot of terms are generated in taking the next derivative to obtain d2e+/dt2, where
one also requires the expression (2.60) for ∂v+/∂y0, viz.,

∂v+

∂y0 =
r+a+

c(r+− r+·v+/c)
.

The book-keeping is left to the reader. The point of doing this calculation is to
illustrate once again the great care needed to manipulate time derivatives in this
context.

Using the New Formula

As mentioned, the remarkable relation (2.64) can be used to derive all the basic re-
sults concerning EM radiation by accelerating charges [1, 2]. The idea is to select
the piece of E which varies inversely as the distance, and neglect the terms varying
inversely as the square of the distance. Indeed, this could be taken as a definition of
radiative terms. The point is that the energy density of this part of the field, propor-
tional to E2, will go as 1/r2, whence its flux through a series of spheres centered on
some retarded point will not diminish with distance from the retarded point (radius
of the spheres).

It turns out after a little analysis that the radiative part of the electric field is

Erad =− q
4πε0c2

d2

dt2 e+ . (2.66)

The picture we thus get is as follows. We look at the charge, in its apparent position,
and note the direction of the unit vector (projecting the direction vector onto the unit
sphere centred on ourselves). As the charge moves around, the unit vector wiggles,
and the acceleration of that unit vector is what gives the radiative field. Now this
unit vector will have both a transverse and a radial component of acceleration. The
latter is due to the fact that the end point must stay on the surface of a sphere. One
can argue that this radial component of acceleration is inversely proportional to the
square of the distance of the source charge, and hence does not contribute to the
radiation. So finally, one only need consider the transverse component of the field
in (2.66), because this is the only component of the fields that escapes to infinity in
the usual sense that physicists understand it.
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2.5.4 Point Charge with Constant Velocity

It is very instructive indeed to examine the potentials and fields due to a point charge
with constant velocity, and they will be used in what follows, so here are the details
[2, Sect. 21.6]. We choose the x axis along the trajectory of the charge, so that this
trajectory is given by x = vt, y = 0, and z = 0 (see Fig. 2.3).

We choose a field point (t,x,y,z) at which to evaluate the Lienard–Wiechert po-
tentials (2.53) on p. 19, viz.,

A0
ret(y) =

q
4πε0c(r+− r+·v+/c)

, Aret(y) =
qv+

4πε0c2(r+− r+·v+/c)
. (2.67)

In the present case, v+ = v = (v,0,0). We need to find the position of the charge at
the retarded time

t+ = t− r+

c
, (2.68)

where r+ is the distance from the field point to the charge at the retarded time. Now
because the charge motion is so simple, we know that it was at x+ = vt+ at the
retarded time, so we know that

r2
+ = (x− vt+)2 + y2 + z2 ,

which combines with (2.68) to give the usual condition

c2(t− t+)2 = (x− vt+)2 + y2 + z2 .

Solving this quadratic equation in t+, we find

γ−2t+ = t− vx
c2 −

1
c

[
(x− vt)2 + γ−2(y2 + z2)

]1/2
, γ−2 :=

(
1− v2

c2

)
.

(2.69)

Then r+ is obtained from r+ = c(t− t+).
The scalar potential φ := cA0 is now found from

φ(t,x,y,z) =
q

4πε0

1
r+− r+·v/c

=
q

4πε0

1
r+− (x− vt+)v/c

.

The denominator here is

c(t− t+)− v
c
(x− vt+) = c

[
t− vx

c2 − γ−2t+
]

,

and substituting in the formula (2.69) for γ−2t+, this gives

c(t− t+)− v
c
(x− vt+) =

[
(x− vt)2 + γ−2(y2 + z2)

]1/2
.



26 2 Some Notions of Electromagnetism

••

•

x

y

z

(x,y,z)Retarded position
(at t+ = t − r+/c)

Present position (at t)

vt

x− vt
vt+

r
r+

1

Fig. 2.3 Charge moving with constant velocity along the x axis. The field at the chosen point and
chosen time can be neatly expressed in terms of the present position of the charge, whereas it is the
behaviour of the charge at the appropriate retarded position that determines its value

Finally then, the scalar potential due to a charge moving with constant speed v along
the x axis is

φ = cA0 =
q

4πε0

1
[
(x− vt)2 + γ−2(y2 + z2)

]1/2 (2.70)

Another way to put this is

φ =
q

4πε0

γ
[
γ2(x− vt)2 + y2 + z2]1/2 (2.71)

From (2.67), A = vφ/c2, whence

A =
q

4πε0c2
γv

[
γ2(x− vt)2 + y2 + z2]1/2 (2.72)

Note that these can be obtained from the Coulomb potential, with A = 0, by a Lo-
rentz transformation, because in the rest frame of the charge, that would be the
potential. However, Lorentz actually obtained the form of the Lorentz transforma-
tion by looking at the way (φ/c,A) changes in going from one inertial frame to
another [2, Sect. 21.6].

It is interesting to note that the potentials given here at x, y, z and at time t,
relative to some inertial frame, for a charge whose present position in this frame is
(vt,0,0), are neatly expressed in terms of the coordinates (x− vt,y,z) of the field
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point as measured from the current position of the moving charge, despite the fact
that it is the behaviour of the charge back at the appropriate retarded position that
really counts (see Fig. 2.3). This has a consequence when we come to look at the
electric and magnetic fields.

It also allows one to get back the general formulas (2.67) in a remarkable way.
This account is adapted from [2, Sect. 26.1]. In Fig. 2.4, the charge is moving in
an arbitrary way. We seek the potentials at (x,y,z) at time t. We first identify the
retarded point P+ and retarded time t+, because we know that it is the doings of the
charge at the retarded time that determine what happens now at our field point. If v+
is the velocity of the charge at the retarded time, then we construct what Feynman
calls the projected position Pproj, where the charge would be now (at time t) if it had
continued on without acceleration since time t+. In fact, its real position now is P on
the diagram. Then the potentials at (x,y,z) at time t are just what (2.71) and (2.72)
would give for the imaginary charge at Pproj, because the potentials depend solely on
what the charge was doing at the retarded time, so they will be the same at (x,y,z)
now whether the charge continued moving at constant velocity v+, or however else
it may actually move thereafter.

The whole of electromagnetism as expressed by Maxwell’s equations thus fol-
lows from the three axioms:

• Aµ is a four-vector.
• The potential for a stationary charge in an inertial frame is the Coulomb potential

φ = q/4πε0r, A = 0.

Fig. 2.4 Charge with arbitrary motion. The potentials at the chosen field point and time are deter-
mined by the position P+ and velocity v+ at the retarded time t+ = t− r+/c, but they are neatly
expressed in terms of the coordinates relative to what Feynman calls the projected position Pproj.
Note that the distance from P+ to Pproj is just the length of the vector v+(t − t+), which is just
r+v+/c

•

•

• (x,y,z)Retarded position P+

Projected position Pproj

Present position P (at t)

v

v+

r+
rp
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• The potentials produced by a charge with arbitrary motion depend only on the
velocity and position of the charge at the retarded time.

Knowing that Aµ is a four-vector, we transform the Coulomb potential to get the
potentials (2.71) and (2.72) for a charge with constant velocity. We then use the rule
that, even for an arbitrary motion of the charge, the potentials depend only on the
position and velocity at the retarded time, together with the argument above, to find
the potentials in that case.

As so clearly explained in [2, Sect. 26.1], this does not mean that the whole of
electrodynamics can be deduced solely from the Lorentz transformation and Cou-
lomb’s law. We do need to know that the scalar and vector potentials form a four-
vector, and we do need to know that the potentials for the arbitrarily moving charge
depend only on the position and velocity, and not for example the acceleration, at
the retarded time. We see from (2.61) and (2.62) on p. 21 that the electric and ma-
gnetic fields do in fact depend on the acceleration of the charge at the retarded time,
as well as the position and velocity then.

But let us return to the electric and magnetic fields for a charge moving with
constant velocity. Naturally, we apply the relations (2.2) on p. 5, and this leads to

E =
qγ

4πε0
[
γ2(x− vt)2 + y2 + z2]3/2




x− vt
y
z


 (2.73)

and

B =
v×E

c2 . (2.74)

The first observation is that, although the influence of the charge at the given field
point at the given time comes from the retarded position of the charge, the electric
fields are actually radial from the present position of the charge. The word ‘present’
refers to simultaneity in the chosen inertial frame. It is a rather remarkable fact that
this will be true whatever inertial frame we choose. The discussion in [2, Sect. 26.2]
is highly recommended once again.

A second point is this. Equations (2.73) and (2.74) were the starting point for
a remarkable paper by Bell entitled How to Teach Special Relativity [5]. For those
who find Einstein’s approach to special relativity somewhat aphysical, and Min-
kowski’s rather too geometrical, Bell shows how the readjusting orbit of an electron
in the EM fields of a moving nucleus will change the shape and period of a gently
accelerating atom, in just the way decreed by relativistic contraction and time di-
lation. In short, it is a return to a physical way of understanding why, given that
there are special (Minkowski) coordinate systems for describing spacetime, adapted
to certain (inertially moving) observers, these coordinate systems should be related
by Lorentz transformations. This is not just deduced in a pseudo-axiomatic way as
is often the case in sophisticated textbooks, nor imputed without further ado to the
Minkowskian geometry of spacetime.
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This reading is once again highly recommended and more will be said about the
subject later on. It is relevant here, where one of the themes is that our theories of the
fundamental forces (mainly the theory of electromagnetism in this book) are telling
us things that we may not have heard. It was Maxwell’s electromagnetism that told
us about the special theory of relativity, although there is a clear tendency to turn
things around and start with relativity in a dry and mathematical way. We should
not forget where the theory of relativity came from. The view in this book is that
Maxwell’s electromagnetism is telling us more, if only we would listen.

The reader should be warned regarding Bell’s paper that some scientists, and
in particular philosophers of science it seems, are radically opposed to Bell’s ap-
proach in [5]. This may just be because their epistemological concerns are radically
different, but the debate is interesting. See for example [9].



Chapter 3
Electromagnetic Mass

The title of this chapter is a deliberate plagiarism of a chapter in The Feynman
Lectures on Physics [2, Chap. 28]. We rapidly review some of the points made there,
which clearly intrigued Feynman, Dirac, and many other scientists before classical
electrodynamics was swept away by quantum electrodynamics with all its glorious
successes. This section is a manifesto for the ideas presented in this book, and at
the same time a demonstration that the subject here is not some weird offshoot of
standard physics, but a straight application of the latter to a context that may have
been largely forgotten simply because it is not very tractable from a mathematical
standpoint.

The heart of the matter is this. In both classical and quantum physics, the electron
is treated as a point particle. This means that it occupies a mathematical point in the
space of any spacelike hypersurface in spacetime, or that it occupies a worldline
rather than a worldtube in spacetime as a whole. It may seem surprising to see the
claim that the electron is treated as a point particle in quantum physics, where it is
of course related in some way to a wave function, but there is a very real sense in
which it is still modelled by a pointlike object in quantum physics. This shows up
in the need to renormalise quantum field theories.

Even classical theories need to be renormalised. Dirac was one of the first to
work on this back in 1938 [3]. The paper is beautifully written and, like all the
classics, well worth the detour. Renormalisation is a physical and mathematical fix
for something that goes drastically wrong when one comes to squeeze numerical
predictions out of a theory, the problem being that the numbers are actually infinite.
It is certainly the most disappointing thing about great theories like QED, and one
feels that there ought to be a way to avoid it. But any student who studies either
classical or quantum theoretical renormalisation of electromagnetism, for example,
will be struck by the remarkable fact that renormalisation is actually possible at all.
This is undoubtedly telling us something about the theory that we have missed.

Lyle, S.N.: Electromagnetic Mass. Lect. Notes Phys. 796, 31–46 (2010)
DOI 10.1007/978-3-642-04785-5 3 c© Springer-Verlag Berlin Heidelberg 2010
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3.1 Energy in the EM Fields of a Charged Particle

In Maxwell’s electromagnetism, the first problem arises when we consider the
energy in the EM fields around a stationary point charge. Since the electric field
has magnitude E = qe/4πε0r2, and since the energy density of the field is supposed
to be given by u in (2.36) on p. 12, we find that

u =
ε0

2
E2 =

q2
e

32π2ε0r4 .

But this means that the total energy in the field, given by the integral of this over all
of space, is going to be the divergent integral

Uelectron =
∫

R3

q2
e

32π2ε0r4 4πr2dr .

Now the problem obviously occurs for small values of r, so an easy way to avoid
this disaster is to cut off the integral for small values of r. But this is also straightfor-
wardly justified from a physical point of view. We only need to say that the electron
is not a point particle after all, but a little sphere. Its charge might be considered as
distributed in some way through the sphere. Let us say that the charge is distributed
uniformly over a spherical surface of radius a, since that simplifies calculations en-
ormously. The fields inside the surface will be zero, and the total energy in the field
around this electron will now be

Uelectron =
∫ ∞

r=a

q2
e

32π2ε0r4 4πr2dr =
1
2

q2
e

4πε0

1
a

=
e2

2a
, (3.1)

with the usual definition of e.
It is clear from (3.1) that Uelectron → ∞ when a → 0. Of course, one could just

about live with an infinite energy if there were no physical manifestations. This
is the way one is supposed to view the renormalisation process in quantum field
theory and it is the suggestion in [2]. An alternative, however, would be to say that
the electron is not a point particle, but has some spatial extent.

3.2 Momentum in the EM Fields of a Charged Particle

Now let us consider the momentum of the fields of a moving charge qe. We shall
consider once again the spherical shell of charge with positive uniform charge den-
sity (strictly, a positron then), moving at a constant velocity v. To begin with we
shall assume that v is small compared with c. For a point P at distance r from the
present position of the charge center C, such that the line CP makes an angle θ with
the velocity v, the electric field lies radially outward from the present position of C.
In fact, we know from (2.73) on p. 28 that
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Fig. 3.1 Momentum density g in the fields E and B of a spherical charged shell with uniform
velocity v along the x axis

Ex =
qeγ(v)
4πε0

x− vt
[γ2(x− vt)2 + y2 + z2]3/2 , (3.2)

Ey =
qeγ(v)
4πε0

y
[γ2(x− vt)2 + y2 + z2]3/2 , (3.3)

Ez =
qeγ(v)
4πε0

z
[γ2(x− vt)2 + y2 + z2]3/2 . (3.4)

Further, according to (2.74), the magnetic field is B = v×E/c2. The fields are
shown in Fig. 3.1. Note that, if the sign of the charge were in fact negative, both
E and B would be reversed, but the momentum density g as given by (2.39) on
p. 12, viz.,

g = ε0E×B ,

would remain the same. Because the magnetic field has magnitude vE sinθ/c2, the
momentum density has magnitude

g =
ε0v
c2 E2 sinθ ,

and points down toward the path of the charge, making an angle θ with the vertical
(see Fig. 3.1).

Note that it is because there is motion that there is a magnetic field, and it is
because there is a magnetic field that there is a momentum carried by the electro-
magnetic fields. The corresponding momentum density is not a radiation field in the
present case, because it drops off as quickly as the Coulomb field of a static charge.

If we integrate the momentum density over the whole space outside the sphere of
radius a in order to work out the total momentum p in the fields, only a component
along the axis of motion will remain. This is a straightforward symmetry considera-
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tion. So we can forget about the component of g perpendicular to v, and the relevant
component of the momentum density is gsinθ .

All this is valid when the charge has a relativistic speed too and we shall turn
to that case in a moment. But to begin with, we shall assume that v is small and
that the sphere of charge remains a sphere. We shall integrate the component of
the momentum density along the axis of motion. The domain of integration is the
whole of space except for the small sphere centred at x−vt. At relativistic speeds the
excluded region around x− vt begins to look ellipsoidal, slightly complicating the
integration, in particular, the choice of variables. Note that it is because we exclude
a small region around the charge centre that we get a finite answer.

The volume element for the integration can be taken as 2πr2 sinθ dr dθ , the vo-
lume of a thin ring of radius r sinθ around the axis of motion. The integral giving
the momentum in the electromagnetic field is

p =
∫ ε0v

c2 E2 sin2 θ2πr2 sinθ dr dθ , (3.5)

where 0≤ θ ≤ π and a≤ r. We soon obtain

p =
8π
3

ε0v
c2

∫ ∞

r=a
E2r2dr . (3.6)

since E2 calculated from (3.2–3.4) is independent of θ when γ ≈ 1.
The first thing to note is that this happens to be parallel to the motion of the

charge! Of course, the situation is so symmetric, where else could it have been?
Well, it could have been antiparallel, and it is not. We shall return to this point la-
ter. The second thing to note is the sense in which we approximate here for small
velocity. We have already used the fact that γ ≈ 1 in order to carry out the θ integra-
tion, but there was another more subtle assumption in the last relation. The question
here is this: what shape does our electron have when in motion? Of course, the mo-
tion is a uniform velocity here, so one might expect it to FitzGerald contract in the
direction of motion. It would then be ellipsoidal in shape when viewed from the par-
ticular inertial frame we have chosen, relative to which it has this motion. However,
we have taken γ to be close to unity, hence the simple cutoff for r in (3.6).

Later we shall consider accelerating charge distributions, and the question of their
shape will become a more pressing issue. But even here, the changed shape of the
charge distribution raises the question of what holds it together. After all, the charge
elements making up the spherical shell are all like charges and will therefore repel
one another. Something is required to hold the system together, which we shall just
refer to as binding forces (also known in the literature as Poincaré stresses). If the
system is accelerated from rest into the state of uniform velocity, something must be
happening inside it so that the various forces readjust to give an ellipsoid. This will
be discussed in more detail later. The reader will spot the connection with Bell’s
ideas, mentioned in Sect. 2.5.4 [5].

But for the moment, let us return to (3.6). In fact, in this approximation, we may
take E to have the nonrelativistic value
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E =
qe

4πε0r2 , (3.7)

whence

p =
2
3

q2
e

4πε0

v
ac2 . (3.8)

Making the replacement e2 = q2
e/4πε0, this becomes

p =
2
3

e2

ac2 v . (3.9)

So the momentum in the EM field is proportional to v and in the same direction.
It is the momentum of a particle with mass 2e2/3ac2, which Feynman calls the
electromagnetic mass:

mEM =
2
3

e2

ac2 (3.10)

We observe immediately that it would be infinite if the charge distribution occupied
only a mathematical point in space (a = 0). What is significant here, from a quali-
tative standpoint, is that the momentum carried by the fields is indeed proportional
to the electron velocity. The exact value of the coefficient, e.g., the appearance of a
factor of 2/3, depends on the spatial structure attributed to the electron, as we shall
see later.

Let us now carry out the relativistic calculation. There will be a bonus in doing
this. The main point will be to show that the electromagnetic mass then contains a
factor γ(v), just as any good inertial mass should do according to special relativity
theory.

Take the x axis along the motion. To begin with, we shall be integrating over all
space outside an ellipsoid given by

γ2(x− vt)2 + y2 + z2 = a2 . (3.11)

Note that this is just the spherical shell when its dimensions in the x direction have
been contracted by the FitzGerald factor. Better coordinates for dealing with such a
domain of integration would be (X ,y,z), where

X = γ(x− vt) . (3.12)

In (X ,y,z) space we can define the ‘distance’ from the origin as

R := (X2 + y2 + z2)1/2 , (3.13)

so that the ellipsoid has equation R = a and we integrate over all of (X ,y,z) such
that R≥ a. We can define an angle θ ′ in this space by
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X = Rcosθ ′ , (y2 + z2)1/2 = Rsinθ ′ . (3.14)

The volume element in (X ,y,z) space is then

dX dydz = 2πR2 sinθ ′ dθ ′ dR . (3.15)

Now as argued above, the momentum in the field is

p =
∫ ε0v

c2 E2 sin2 θ dV , (3.16)

where dV = dxdydz and E is the magnitude of E given by (3.2–3.4). We find

E2 =
q2

e

16π2ε2
0

γ2
[
(x− vt)2 + y2 + z2

]
[
γ2(x− vt)2 + y2 + z2

]3 . (3.17)

Everything in the integrand of (3.16) has to be expressed in terms of the new va-
riables R and θ ′. To begin with

dV = dxdydz =
dX dydz

γ
. (3.18)

We also have

E2 =
q2

e

16π2ε2
0

γ2
(
X2/γ2 + y2 + z2

)
(
X2 + y2 + z2

)3 , (3.19)

where

X2

γ2 + y2 + z2 = R2
(

cos2 θ ′

γ2 + sin2 θ ′
)

, (3.20)

and

sin2 θ =
y2 + z2

(x− vt)2 + y2 + z2 =
sin2 θ ′

cos2 θ ′

γ2 + sin2 θ ′
. (3.21)

Putting all this together, we now find that

p =
q2

eγ2v
16π2ε0c2

∫

X2+y2+z2≥a2

X2/γ2 + y2 + z2

(X2 + y2 + z2)3 sin2 θ
dX dydz

γ

=
q2

eγv
16π2ε0c2

∫

R≥a,0≤θ ′≤π

2π sin3 θ ′

R2 dθ ′ dR .

Referring back to (3.5), we see that this is exactly γ times the nonrelativistic result.
In other words, in the relativistic case
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p =
2
3

q2
e

4πε0

γ(v)v
ac2 . (3.22)

Making the replacement e2 = q2
e/4πε0, this becomes

p =
2
3

e2γ(v)
ac2 v . (3.23)

We thus attribute an electromagnetic mass

mEM(v) =
2
3

e2

ac2 γ(v) (3.24)

to the electron with spherical shell structure.

3.3 Inertial Mass

We do not know why things have mass. That is, we do not know how to predict
the resistance something will show to being accelerated, which is quantified by its
inertial mass.

In elementary particle physics, some particles are indeed considered to be ele-
mentary, in the sense of not being composed of anything smaller, e.g., all the leptons
(electron, muon, tau lepton, their corresponding neutrinos, and all the associated an-
tineutrinos), but also all the quarks (three generations, three colour charges for each,
and all their associated antiparticles). The masses of all these particles must simply
be fed into the Standard Model of particle physics as parameters whose values we
attempt to provide experimentally.

Then there are an enormous range of bound state particles, built up from the
elementary particles, e.g., the proton, comprising two up quarks and one down quark
(whose colour charges combine to white). It is interesting to look at the way one tries
to obtain the mass of a particle like the proton from the masses of the constituent
quarks and other features, and we shall do that in detail in Chap. 13. For the moment,
suffice it to say that there are three ingredients for the proton mass:

• The rest masses of the constituent quarks.
• The kinetic energies of the constituent quarks, divided by c2 to get the right units.
• The binding energy of the system, divided by c2 to get the right units.

The result is a long way from being the simple sum of the three rest masses of the
constituent quarks. But this is in fact a good thing, because it is telling us something
about what causes inertia.

It is interesting to ask students of physics why one should add in kinetic energies
of constituents, or binding energies, divided by c2. Most answer without hesitation
that it is just an application of E = mc2. Here we have something like a principle
from special relativistic dynamics, and as a principle, it requires no further expla-
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nation. One of the aims of this book will be precisely to explain this feature of the
inertial mass of a bound state.

But what about the masses of the elementary particles, like the electron? If it
really were a point particle, it would be difficult to make any model for its inertia
that were intrinsic to its structure, in order to predict its mass, or at least understand
the origin of its resistance to acceleration, simply because one is effectively denying
it any internal structure. But the very fact that we need to renormalise QED is presu-
mably telling us that it should not really have been treated as a point particle. This is
certainly what happens in the case of classical renormalisation, where one unders-
tands very clearly why the point particle idea must just be an ‘approximation’. (This
is not really the right word, because the error turns out to be infinite. It is rather a
‘simplification’, allowing one to do calculations and just feed in the measured value
of the inertial mass. More about all that later.)

So how does the Standard Model explain the inertia of the truly elementary par-
ticles? The answer is the Higgs mechanism. The Standard Model predicts the exis-
tence of the Higgs boson, although it has not yet been detected. In popular accounts,
moving through the Higgs field is rather like trying to move through honey. The
particle gets its inertia from the outside, as it were, rather than from any intrinsic
structure. The analogy is not perfect, however, because viscosity also opposes uni-
form velocities, while the Higgs field presumably does not.

One problem with the Higgs particle is that the theory cannot tell us what energy
will be required of the particle accelerator that is to generate it, so the only solution
is to keep ramping up the energy and hope that it will eventually be found. Since
increasing the energy is something that we would have done anyway, out of pure
curiosity, there is nothing to be lost by this strategy. But it does raise the question as
to whether one should not have alternative theories up one’s sleeve, just in case the
Higgs particle never shows up.

In this book, we shall revive the old bootstrap idea that there are in fact no ele-
mentary particles, and that it is the very structure of each particle that causes it to
resist its acceleration. We shall also mention a purely mathematical alternative to
the Higgs mechanism which unifies the electromagnetic and weak interactions with
the same predictions for the W± and Z bosons (see Sect. 13.5). Like the Higgs me-
chanism, these are merely hypotheses. In the end, experiments will hopefully guide
us to the best hypothesis.

The reader may be wondering what the connection is with the last section. Well,
as Feynman says [2, Sect.28.3], an inertial mass is associated with the electron, and
that means that it in some sense carries a momentum proportional to its velocity.
But, in the last section, we have seen how we can understand that a charged particle
should carry a momentum proportional to its velocity. Could it be that all the mass
of the electron comes from this electrodynamic effect?

Perhaps not. Perhaps there is also what physicists like to call a mechanical mass
mmech, with an associated momentum mmechv when the object moves with velocity
v. When we measure the momentum of the particle in order to determine its mass,
what we would then find is the total mass mmech +mEM. The momentum we measure
would be this times the velocity of the charge. In this picture, the observed mass
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would comprise two parts, or maybe more if other fields were included. One thinks
of the weak force, strong force, and even the gravitational force. Each force for
which the object, or part of the object, serves as a source might contribute some
further part to the mass.

But for the moment, all we know is that there is definitely an electromagnetic
piece in the particle’s mass, and there is the exciting possibility that there might ac-
tually be no mechanical piece mmech, i.e., that all the mass might be electromagnetic.
On this hypothesis, one can determine the radius the little spherical shell of charge
must have if it is to model the electron, because one knows the rest mass me of the
electron. Setting (3.10) equal to me, one obtains

a =
2
3

e2

mec2 =
2
3

rclassical , (3.25)

where

rclassical :=
e2

mec2 = 2.82×10−15 m

is called the classical electron radius. This should be compared with the diameter of
an atom, which is of the order of 10−10 m.

Note that one can carry out the calculations of the last section for other charge
distributions and the results are very similar. Indeed, they differ only in the value
of the constant in front of rclassical in the last relation, and this is why rclassical is
singled out as perhaps being representative of the electron radius, rather than the
actual value obtained in (3.25) with the factor of 2/3. For example, if the charge
is uniformly distributed throughout the sphere of radius a, the prefactor changes to
4/5. Part of this book will be devoted to doing calculations with another charge dis-
tribution, a much simpler one, making certain calculations more tractable, in order
to illustrate various features of this rather striking situation, and hopefully convince
some readers that there are interesting things to be discovered.

But for now, let us reflect a moment on the relativistic calculation, leading to
(3.24). The electromagnetic contribution to the inertial mass increases by a factor
γ(v) as v increases. This was discovered before the advent of the special theory of
relativity, which decrees as one of its principles that the 3-momentum of a particle
with rest mass m and velocity v should be taken as mγ(v)v in order to build up a
consistent Lorentz symmetric theory of dynamics (see Sect. 13.1). The point we
would like to make here is that special relativistic dynamics simply decrees that
inertia should increase with speed, without other explanation than the idea that this
leads to a consistent picture. But here we find that we have a little more understan-
ding than that. At least the EM contribution to the inertial mass has to increase like
this because this is how the momentum of the EM fields of the charge will increase.

The reader would be quite right to point out that this is not much of a mechanism,
at least, not as it stands. After all, we have found the momentum of the EM fields,
not the momentum of the charge itself! What brings about this momentum? Or for
that matter, what brings about the energy in the fields, discussed in Sect. 3.1. And
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since we are on the subject of relativity theory, surely the electromagnetic mass we
should be talking about is Uelectron/c2, where Uelectron is as found in (3.1) on p. 32,
which would give

mEDM
EM :=

Uelectron

c2 =
1
2

e2

ac2 (3.26)

where the superscript EDM indicates that this is the energy-derived mass. This dif-
fers from the momentum-derived mass mMDM

EM by a numerical factor. Put another
way, combining (3.1) and (3.10), we obtain

Uelectron =
3
4

mMDM
EM c2 , (3.27)

whereas relativity theory would have preferred to do without the factor of 3/4.
That particular discrepancy has led to a long debate in the literature, and we shall

be considering some of the issues raised in detail in Chap. 11. From the angle taken
in this book, the appropriate solution will not be difficult to find. But first, what is the
mechanism behind EM mass, either momentum-derived or energy-derived? When
we try to accelerate a charged sphere, for example, what is it that we are having to
push against?

3.4 Self-Force

Feynman is very clear [2, Sect. 28.4] about the problem raised at the end of the last
section: we get a discrepancy because the binding forces in the system have been
left out. This will indeed be our conclusion in Chap. 11, but the reader will also
discover there exactly why there was such a debate about this issue, and hopefully
obtain a better insight into this approach to explaining inertia.

So the point is that there are unbalanced forces in our spherical shell of like
charges, which will naturally repel one another. As Poincaré was among the first
to discuss this, the binding forces are often referred to as Poincaré stresses. And
of course, these binding forces must be included in any energy and momentum
calculations if we are to be able to use the conservation laws to make deductions.
When we do this, the discrepancy disappears, i.e., we get an answer that is consistent
with relativity, without the 3/4 factor in (3.27). Both mMDM

EM and mEDM
EM are changed,

and each contains a contribution from EM effects and from the effects of the binding
forces.

For Feynman, this need to include some other ingredient apart from electroma-
gnetism spoilt the beauty of the idea and he complains about the complexity of the
resulting theory [2, Sect. 28.4]. And there is no denying the complexity. How strong
are the binding forces? What causes them? Can the system oscillate? What are its
internal properties? If there are oscillation modes, why have we not observed them?
On the other hand, as he points out, we may have observed such modes and just
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not recognised their origin. Today one immediately thinks of the muon and the tau
lepton, for example, particles with very similar properties to the electron, but higher
mass. More about that later.

But let us turn now to the electromagnetic forces within our system. So far we
have discussed the momentum-derived mass, saying that we had a mass because the
momentum in the fields was proportional to the velocity of the charge. But mass is
also supposed to be a measure of inertia, resistance to being accelerated. A particle
has a mass because a force has to be exerted on it to change its velocity, to accelerate
it.

With regard to the EM contribution to the mass, we know there has to be a force
here because we have a law of conservation of momentum for the fields in the form
(2.40). When we push the charged particle for a while, there is some momentum
in the EM field, and something must have got this momentum into the field. We
conclude that there must have been a force in addition to the one required by the
mechanical inertia of the electron (i.e., any inertia due to other contributions to its
mass), in order to get it moving faster. But then there must have been a correspon-
ding extra force back on the accelerating agent, in addition to the one due to the
mechanical mass.

Now if our spherical shell of charge were just sitting there motionless in our
inertial frame, we could consider the EM force of each charge element on each other
charge element. The force of a surface element dS1 on another surface element dS2
would be equal and opposite to the force of dS2 on dS1. This is just the Coulomb
force. The sum of the two forces, considered as acting not on the individual elements
but as contributing to the force of the whole system on itself, would be zero (and
this even if the charge distribution is non-uniform). The total EM self-force on the
stationary system is trivially zero.

But when the system is moving, there are retardation effects. We know this from
relations like (2.61) and (2.62) on p. 21, which give the fields somewhere due to
a charge element in motion. The fields depend on what the charge was doing at
the retarded time. The reader will see that there is a potentially very complicated
calculation to be done here in order to find out how each charge element acts on each
other charge element when the whole system has some arbitrary motion. Having a
model in the form of a spherical shell of charge does not help things along here. In
this book, we shall consider a much simpler system, which thus displays the relevant
effects more clearly, although at first sight it may look like a step back from the ideal
of doing away with point charges. More about that in a moment.

But first, here is the self-force on the uniform spherical shell of charge when it
is being accelerated in some arbitrary way along the x axis, as quoted by Feynman
without proof [2, Sect. 28.4]:

Fself =−α
e2

ac2 ẍ+
2
3

e2

c3
...x + γ

e2a
c4

....x +O(a2) (3.28)

where x(t) gives the position of the shell center at time t and α and γ are numerical
coefficients of order unity. (The expression here has the opposite sign to the one
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given by Feynman, because he in fact quotes the force required to overcome the
self-force.) This has been obtained by expanding everything in powers of a, treated
as a small quantity. For the spherical shell, it turns out that α = 2/3. So we have a
term proportional to the instantaneous value of the acceleration ẍ which goes as 1/a
and hence diverges as a→ 0. For a point particle, the self-force would be infinite.

Another thing that is immediately obvious from (3.28) is that the self-force will
be zero when the spherical shell has a uniform velocity, because then ẍ = 0, and
all the higher time derivatives are zero. Thinking back to the above calculation of
the self-force that takes retardations into account, it is actually quite remarkable that
the self-force turns out to be zero in this case. We shall not demonstrate this here,
although it is much easier than proving (3.28) for the general motion. The reason
is that we shall soon introduce a simpler spatially extended charge distribution in
which the calculations are generally easier anyway, so that basic issues like this
become more transparent.

This is a basic issue. The self-force effect, at least the electromagnetic one, makes
a clear distinction between uniform motion and accelerated motion. No extra force
is required to keep electromagnetic mass in uniform motion. One only requires an
extra force when there is acceleration. The reader should be thinking of Newton’s
first and second laws here. Newton’s first law would have been in trouble if we had
self-forces for uniform motions, because bound state particles like protons comprise
a charge distribution, and the EM mass for such particles is indeed included in their
inertial mass in the form of the EM binding energy (over c2).

The idea here is that the EM mass contribution to inertia arises precisely because
of the need to overcome the EM self-force. The coefficient of the first term in (3.28)
is precisely what we denoted by mMDM

EM . We express this by writing

mMDM
EM = mSFDM

EM (3.29)

with the obvious notation mSFDM
EM for the self-force-derived mass, which is just de-

fined to be the coefficient of ẍ in the self-force expression (3.28). In the proton
example, it makes no difference to this conclusion whether the EM binding energy
turns out to be positive or negative. When a binding energy is negative, it transpires
that the EM self-force helps the acceleration along, i.e., it reduces the inertia. This
will be demonstrated very clearly with the very simple spatially extended charge
distribution to be introduced shortly.

One important and rather interesting problem with (3.28) is not mentioned by
Feynman. If the reader attempts to carry out the self-force calculation for uniform
motion, she/he will naturally take the shell to be ellipsoidal in shape as viewed from
the chosen inertial frame. But what shape should it have when it has an arbitrary
acceleration? One must assume something in order to get the result in (3.28). We
shall go into this question in some detail, but for our simple charge distribution. A
strong connection will be made with Bell’s ideas in [5].

Suffice it to say for the moment that the usual assumption is as follows: at each
instant of time the sphere is assumed to look exactly spherical in its instantaneous
rest frame. This assumption amounts to a notion of rigidity in the relativistic context
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(see Chap. 12). It is something that the binding forces would have to enforce, and
we shall see that there are problems with it, although it looks like a reasonable ap-
proximation in some sense. A good modern reference for the self-force calculations
with a spherical shell of charge is [7], but it is not an easy subject.

3.5 Radiation Reaction

So much for the first term in (3.28). But what about the other terms? The second
term is particularly interesting, because it turns out to be independent, not only of
the dimension a of the charge distribution, but even of its shape! We shall see a
detailed example of that in Sect. 6.6.2.

One reaction to the fact that the self-force is infinite for a point electron is to
throw the whole thing away, decreeing that electrons are only affected by the fields
due to other charged particles, not by their own fields. The problem with this ap-
proach is that one really needs the second term in (3.28) because it explains how
accelerating electrons manage to radiate electromagnetic energy. Let us examine
this claim.

When a charged particle like an electron is accelerated, it radiates EM waves
and therefore loses energy (see Sect. 2.5.2). This suggests that more force would be
needed to accelerate a charged particle than to accelerate a neutral one with the same
mechanical mass, because otherwise energy would not be conserved. The extra bit
of force is called the radiation reaction or radiation resistance. Indeed, the rate at
which this extra bit of force does work on an accelerating charge must be equal to
the rate of energy loss per second by radiation. But where does the extra bit of force
come from, against which we must do this work?

Feynman cites the case of an antenna. When it radiates, the forces required come
from the influence of one part of the current in the antenna on another part. So for a
single accelerating electron radiating into otherwise empty space, there is only one
place the force could come from, namely the action of one part of the electron on
another part. Now that explanation is obviously in trouble if the electron really does
just occupy a mathematical point. But when it has a spatial extent, like the spherical
charged shell, or indeed any other shape, we always find a term

F rad
self :=

2
3

e2

c3
...x (3.30)

in the self-force, and we shall now show that this is precisely the right force to
explain EM radiation by a charged particle.

We consider the rate of doing work on an electron against the bootstrap force in
(3.28). The rate of doing work with a force F along the x axis is just Fẋ, so the first
term in (3.28) requires a rate
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dW1

dt
= α

e2

ac2 ẍẋ =
1
2

α
e2

ac2
d
dt

(
ẋ2) ,

and this is precisely the rate of change of the kinetic energy

1
2

mSFDM
EM v2

associated with the (self-force-derived) EM mass. The second term in (3.28), picked
out in (3.30) above, requires a rate

dW2

dt
=−2

3
e2

c3
...x ẋ =−2

3
e2

c3
d
dt

(
ẋẍ

)
+

2
3

e2

c3 ẍ2 .

Now for a periodic motion x ∝ cosωt,

ẋẍ ∝ sin2ωt ,

so the first term in dW/dt will average to zero. But the second term is always posi-
tive. It is precisely the Larmor radiation formula (2.63) on p. 22.

So the term (3.30) that depends on
...x in the self-force is required to guarantee

energy conservation in radiating systems, and cannot be simply thrown away. This
discovery was made by Lorentz. As Feynman puts it, we must believe in the idea of
the action of the electron on itself, and we have to keep the term (3.30). However,
for Feynman, this created a difficulty, because he clearly considered the first term
in (3.28) to be a problem, so for him, the issue was: how do we justify dropping
the first term in the self-force but keeping the second? On the other hand, from our
point of view, we may say that the first term is only really a problem if the electron
is in fact spatially pointlike.

3.6 Lorentz–Dirac Equation

Feynman mentions what he describes as a peculiar possibility due to Dirac [3]. It
amounted to saying that the electron would act on itself only through the second
term (3.30) of (3.28) and not through the first. Actually, although it may appear
peculiar, this is precisely the idea of mass renormalisation, carried over today into
our most sophisticated theory of electromagnetic phenomena, viz., QED. The coef-
ficient of ẍ in the first term of (3.28) is absorbed into the total inertial mass of the
electron. One can then let the system size tend to zero, getting rid of all the higher
order terms in (3.28), and not worrying about the fact that one has made an infinite
adjustment to the inertial mass, since in the end, one just says that the inertial mass
is the finite quantity we observe in practice.

Naively one has something like this:

Fext +Fself = mbareẍ ,
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where Fext is the total external force on the system, and mbare is the true (mechanical)
inertial mass. By (3.28), this implies the following version of Newton’s second law:

Fext =−2
3

e2

c3
...x +

(
mbare +α

e2

ac2

)
ẍ .

One defines the renormalised inertial mass to be

mren := mbare +α
e2

ac2 .

If we let a→ 0, this is infinite, unless mbare was itself already infinite. But we do not
worry about that, because we can just say that mren is what we actually measure to
be the inertial mass. Then the equation of motion for the charge becomes

Fext = mrenẍ− 2
3

e2

c3
...x , (3.31)

and when Fext is a force due to the presence of EM fields, as described in Sect. 2.3,
we have something like the Lorentz–Dirac equation for the motion of a charged
particle in the presence of external EM fields. The only vestige of the self-force
is the radiation reaction term. Note, however, that (3.31) is not the Lorentz–Dirac
equation. The above manipulations are only intended to provide an idea of what is
going on.

Indeed, this is not the place to go into all the details of Dirac’s equation. It is not
easy to obtain a rigorous derivation, and if it is used outside its domain of validity,
it leads to some very strange conclusions, as attested by the vast literature on the
subject over the past few decades. A good reference with a rigorous derivation that
treats the domain of validity of the equation very carefully and reveals some of
its limitations is the book by Parrott [8]. The original, elegantly written paper [3]
by Dirac is also highly recommended, and a review of both in a slightly different
context can be found in [4, Chap. 11].

3.7 A Toy Electron

The calculation leading to the self-force in (3.28) is not an easy one. A modern
discussion of this case can be found in the brief and elegant book by Yaghjian [7]. A
perfectly symmetrical charged sphere may well be the simplest continuous charge
distribution one could think of and hence a good place to start when trying to carry
out self-force calculations, or when trying to work out the energy and momentum in
its fields. However, there is a much simpler way of obtaining a toy electron which
satisfies the most basic requirement here of having some spatial extent.

Indeed, undoubtedly the simplest way to get some spatial extent is just to consi-
der a system comprising two point charges of value qe/2, separated by some fixed
distance d. We have sacrificed the key idea of having a continuous charge distri-
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bution, but kept the idea of a particle with spatial extent. We shall carry out the
following investigations with this system:

• We calculate the momentum in the fields of the system when it is moving with
constant velocity along its axis in some inertial frame, assuming the appropriate
FitzGerald contraction of the length and assuming that each point charge is ac-
tually a tiny spherical shell of charge of radius a (see Sect. 5.2).

• We calculate the momentum in the fields of the system when it is moving with
constant velocity perpendicularly to its axis in some inertial frame, assuming
once again that each point charge is actually a tiny spherical shell of charge of
radius a (see Sect. 5.3).

• We calculate the self-force to leading order when the system is accelerating in a
straight line perpendicularly to its axis in some inertial frame (see Chap. 6).

• We calculate the self-force to leading order when the system is accelerating along
its axis in some inertial frame (see Chap. 7), discussing in detail what assump-
tions one ought to make about the system length (see Chap. 12).

• We calculate the self-force to leading order when the system is rotating about a
fixed center, perpendicular to its axis, in such a way that it always lies along a
radial line from the center of rotation (see Chap. 8).

• We calculate the self-force to leading order when the system is rotating about a
fixed center, almost parallel to its axis, in such a way that it always lies perpen-
dicular to a radial line from the center of rotation (see Chap. 9), discussing once
again the assumptions one ought to make about the system length.

We shall then draw conclusions from the results (see Chap. 10), and also solve
the problem of the discrepancy between energy-derived EM mass and momentum-
derived EM mass for both the spherical charge shell and this dumbbell charge sys-
tem (see Chap. 11).

The calculations in Chaps. 6–9 are given in some detail, partly because it is
important to understand the complexity of this kind of calculation, and partly be-
cause, to the author’s knowledge, the self-force calculations for the rotating exten-
ded charge system may well be original. The complexity is important. The motions
in the four self-force scenarios are each radically different from the geometrical
standpoint, but Maxwell’s equations deliver simple results with a pattern. Either
there is some very trivial explanation for this, or it reveals some deep message from
the classical theory of electromagnetism.



Chapter 4
A Brief Excursion into General Relativity

The reader is assumed to know a little about general relativity in this chapter, al-
though only the most basic knowledge would suffice for this rather trivial applica-
tion. An original and alternative discussion of some of the issues discussed here can
be found in [9].

4.1 Static Homogeneous Gravitational Field

We consider the charged sphere in a static homogeneous gravitational field (SHGF),
i.e., a spacetime with coordinates (y0,y1,y2,y3) in which the metric assumes the
form

gµν =




(
1+

gy3

c2

)2

0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1




. (4.1)

Here we have to specify that y3 6= −c2/g to avoid degeneracy of the metric. These
are supposed to be the coordinates that would be set up in a laboratory that is held
fixed relative to some distant gravitational source, at least to within some approxi-
mation, with a parallel gravitational field in the negative y3 direction. It should be
a good approximation in a small laboratory on the surface of the Earth over some
short time span. (Actually, the reader is invited to be more critical of this easy inter-
pretation [4].)

It is natural to seek a locally inertial frame at the spatiotemporal origin of these
coordinates. The existence of such a frame is guaranteed by the weak equivalence
principle (WEP) when one uses the usual Levi-Civita connection. Consider the co-
ordinates (t,x,y,z) defined by
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t =
c
g

sinh
gy0

c2 +
y3

c
sinh

gy0

c2 , (4.2)

x = y1 , y = y2 , (4.3)

z =
c2

g

(
cosh

gy0

c2 −1
)

+ y3 cosh
gy0

c2 . (4.4)

Note that the spatiotemporal origins of the two systems coincide. By simple alge-
braic manipulations, the inverse transformation is

y0 =
c2

g
tanh−1 gt/c

1+gz/c2 , (4.5)

y1 = x , y2 = y , (4.6)

y3 =

[(
z+

c2

g

)2

− c2t2

]1/2

− c2

g
. (4.7)

Let us evaluate the metric components relative to these coordinates. The quickest
approach is to consider the invariant

ds2 =
(

1+
gy3

c2

)2

(dy0)2− (dy1)2− (dy2)2− (dy3)2 , (4.8)

using

dy0 =
∂y0

∂ t
dt +

∂y0

∂ z
dz , dy3 =

∂y3

∂ t
dt +

∂y3

∂ z
dz . (4.9)

The partial derivatives are

∂y0

∂ t
=

c
(

1+
gz
c2

)

(
1+

gz
c2

)2
−

(gt
c2

)2 ,
∂y0

∂ z
=

−gt/c
(

1+
gz
c2

)2
−

(gt
c2

)2 , (4.10)

∂y3

∂ t
=

−gt
[(

1+
gz
c2

)2
−

(gt
c2

)2
]1/2 ,

∂y3

∂ z
=

1+
gz
c2

[(
1+

gz
c2

)2
−

(gt
c2

)2
]1/2 . (4.11)

We now work out
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(
1+

gy3

c2

)2

(dy0)2− (dy3)2 = c2dt2−dz2 , (4.12)

after a short calculation.
The upshot of this is that the metric takes the Minkowski form in the new coordi-

nates. These coordinates are not therefore merely locally inertial, with Minkowski
form at the event in question and zero connection coefficients at that same event, but
globally inertial. The spacetime we are considering has zero curvature everywhere
and is therefore identical to the Minkowski spacetime. That is a point in favour of its
representing an SHGF, because there would be no tidal effects in such a gravitational
field, and so there should be no curvature in the general relativistic model.

We can find the geodesics of our spacetime very simply by considering the
geodesics in the inertial coordinates and transforming them to the coordinates
(y0,y1,y2,y3). One obvious geodesic is the spatial origin of the inertial coordinate
system as time goes by. If we take s as the inertial time parameter of this worldline,
it has the form

t = s , x = y = z = 0 . (4.13)

In the original coordinates, this becomes

y0 =
c2

g
tanh−1 gs

c
, y1 = 0 = y2 , y3 =

c2

g

[(
1− g2s2

c2

)1/2

−1

]
. (4.14)

Eliminating the parameter s, this becomes

y3 =
c2

g

[
1

cosh(gy0/c2)
−1

]
, y1 = 0 = y2 . (4.15)

We are saying that this is a timelike geodesic and hence a worldline corresponding
to free fall in this model.

We may also seek the equation for the worldline of the spatial origin of the co-
ordinates (y0,y1,y2,y3) when described in the inertial coordinates. This time our
worldline is given, with parameter σ , by

y0 = σ , y1 = y2 = y3 = 0 . (4.16)

In the inertial coordinates, we have

t =
c
g

sinh
gσ
c2 , x = 0 = y , z =

c2

g

[
cosh

gσ
c2 −1

]
. (4.17)

Eliminating the parameter, this gives the worldline

x = 0 = y , z =
c2

g

[(
1+

g2t2

c2

)1/2

−1

]
. (4.18)
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This is the worldline of a particle whose 4-acceleration aµ has constant squared
magnitude a2 = ηµν aµ aν =−g2.

The best way to show this is to work out the 4-acceleration components in the co-
ordinates (y0,y1,y2,y3), because the worldline then has the simple form (4.16). The
proper time of the worldline as a function of the coordinate y0 can be read straight
from the metric as τ = y0/c, since y3 = 0 along the worldline. The components of
the 4-acceleration are thus

aµ :=
d2yµ

dτ2 +Γ µ
αβ

dyα

dτ
dyβ

dτ
= c2Γ µ

00 , (4.19)

where Γ µ
αβ are the Levi-Civita connection coefficients, calculated from the metric

by the usual formula

Γ µ
00 =

1
2

gµν
[

2
∂gν0

∂y0 − ∂g00

∂yν

]
, (4.20)

whence

Γ 0
00 =

1
2

g00g00,0 = 0 , Γ 1
00 =−1

2
g11g00,1 = 0 , (4.21)

Γ 2
00 =−1

2
g22g00,2 = 0 , Γ 3

00 =−1
2

g33g00,3 =
g
c2

(
1+

gy3

c2

)
. (4.22)

On the worldline, we have y3 = 0 and hence,

aµ = (0,0,0,g) . (4.23)

The invariant a2 := gµν aµ aν =−g2 is therefore constant along the worldline. If we
work this out in the inertial frame, we obtain the same result. Even the 4-acceleration
components themselves are constant when viewed in the SHGF lab frame.

The above change of coordinates (4.2)–(4.4) seems to be somewhat miraculous.
However, one could find it in this way. Starting with a Minkowski spacetime and
inertial coordinates like (t,x,y,z), one can envisage an accelerating observer AO,
following the worldline (4.18). One can set up what are known as semi-Euclidean
coordinates {yµ} for the accelerating observer, with the following properties (where
the Latin index runs over {1,2,3}):

• Any curve with all three yi constant is timelike and any curve with y0 constant is
spacelike.

• At any point along the worldline of AO, the zero coordinate y0 equals the proper
time along that worldline.

• At each point of the worldline of AO, curves with constant y0 which intersect it
are orthogonal to it where they intersect it.

• The metric has the Minkowski form along the worldline of AO.
• The coordinates yi are Cartesian on every hypersurface of constant y0.
• The equation for the worldline of AO has the form yi = 0 for i = 1,2,3.
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These semi-Euclidean coordinates are precisely the coordinates (y0,y1,y2,y3) that
we started out with here. For example, we noted above that the time coordinate y0 is
precisely the proper time along the worldline of the spatial origin of the coordinates
(y0,y1,y2,y3). There is more about this in Sect. 12.1.4.

4.2 Equality of Inertial and Passive Gravitational Mass

We are concerned here with an experimental result that already features in New-
tonian physics, namely the equality of passive gravitational mass, the measure of
how much a particle is supposed to feel the Newtonian force of gravity, and inertial
mass, the measure of how much a particle is supposed to resist being accelerated. In
Newtonian gravitational theory, this means that an observer could not tell whether
the acceleration of a test particle relative to her Euclidean coordinate system was
due to some gravitational field or due to her own acceleration and the consequent
acceleration of her comoving Euclidean coordinate system. (The acceleration of that
Euclidean system must not be rotational here.) In pre-relativistic theory, one had no
difficulty setting up Euclidean coordinate systems in spatial hypersurfaces and time
was the same for everyone.

Let us consider what we can say about the charged sphere of the last chapter,
or a charged particle represented by such a sphere, if it is held fixed at the origin
of the {yµ} coordinate system in Sect. 4.1. We interpret this as meaning that the
sphere is supported against the uniform gravitational field, e.g., resting on a table
in our laboratory. Of course, this requires a force, as attested by the fact that the
four-acceleration aµ is non-zero. The sphere is being pushed off its geodesic. So as
viewed from the globally inertial freely falling frame, the sphere is accelerating.

Now one can import the whole theory of electromagnetism into GR by applying
the strong principle of equivalence (SEP). We said above that, when the connection
is the symmetric metric connection known as the Levi-Civita connection, then for
any event in spacetime, there is always a neighbourhood of that event in which the
metric has approximately the Minkowski form and the connection coefficients are
approximately zero. This statement of the existence of such locally inertial frames
is often called the weak equivalence principle [4]. The strong equivalence principle
then states that all other bits of physics, i.e., non-gravitational physics, will appear
relative to the locally inertial frames roughly as they do in the flat Minkowski spa-
cetime. This is formulated by taking all the equations of whatever non-gravitational
physics one is considering and replacing all ordinary partial coordinate derivatives
by covariant derivatives relative to the Levi-Civita connection.

So Maxwell’s equations can be extended to any GR spacetime. In fact, this gives a
minimal extension of Maxwell’s equations (MEME). There are other extensions, in
which curvature terms are introduced, but we shall only consider MEME. Now the
reason for describing the SHGF in such detail is that there are in fact global inertial
frames in that case, so we can view our charged sphere as accelerating uniformly
in a flat spacetime without gravity. But we know in that context that the sphere will
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exert an EM self-force on itself. The strong equivalence principle then tells us that,
since the electromagnetic effects will be exactly the same for the charged sphere
when it is sitting on a table in our laboratory, according to this model using GR and
SEP, the sphere will exert an EM self-force on itself in that case too. This self-force
will oppose the supporting force of the table which pushes it off its geodesic.

To see the import of this deduction, imagine for a moment that all the inertial
mass of the charge sphere is EM mass. Then we are saying that the supporting force
of the table is precisely what is required to cancel the EM self-force, no more and no
less. In this view of things, we understand why a force is required (from the table)
to keep the sphere off its geodesic in this way, i.e., to stop it falling. Better than that,
the passive gravitational mass of the sphere is precisely equal to its inertial mass.
Let us try to formulate these ideas.

Suppose the sphere does have a mechanical mass mmech, so that its equation of
motion in the GR formulation is

mmech

(
d2yµ

dτ2 +Γ µ
αβ

dyα

dτ
dyβ

dτ

)
= Fµ

self +Fµ
supp ,

where Fsupp is the supporting force. We saw above that, when the sphere is held
fixed relative to the semi-Euclidean coordinates {yµ}, it has four-acceleration a =
(0,0,0,g), and by applying MEME, we know that

Fself =−mSFDM
EM (0,0,0,g) ,

so we can rewrite the equation of motion in the form
(
mmech +mSFDM

EM
)
(0,0,0,g) = Fsupp .

The passive gravitational mass mPG would be defined by the proportionality between
the four-acceleration and Fsupp, whence

mPG = mmech +mSFDM
EM (4.24)

If there is no mechanical mass, then we have

mPG = mSFDM
EM = minertial .

If the mechanical mass is there, but derives from self-forces due to other fields (weak
and strong) sourced by components of the particle, then the law of motion of the
particle is no longer given fundamentally by a law like Newton’s second law (the
famous F = ma), but rather by a law of the form

∑
fields

Fself +Fsupp = 0 (4.25)
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The typical form of Newton’s second law then follows by analysing the self-forces
into some multiple of the four-acceleration, and the whole problem of the research
program suggested in this book is to show that this is always possible, not just for
EM forces, but for the other forces too, and then to show that there is no other
mechanical mass. It is a big program, but what we obtain automatically here is the
equality of the inertial mass and the passive gravitational mass.

It is important to note that SEP really is necessary for this deduction. Even though
the spacetime is flat, we are interpreting it as a spacetime in which there is a gravi-
tational field, and we are applying GR to do so, and this means that we do need SEP
to tell us how to do electromagnetism in this context. Apart from that, none of the
algebra displayed at the beginning of this chapter is really necessary. It was only put
in for concreteness, to define the context. Note also that we have ignored the higher
order terms in the self-force (3.28), such as the radiation reaction, but these could
be taken into account and that would not affect the conclusion here.

Physically, the spacetime metric plays a key role here. In the {yµ} frame, the
electromagnetic field and any other field sourced by the particle itself will be distor-
ted in relation to their form in an inertial frame in which the particle is permanently
at rest. The distortion will mean that the particle exerts a force on itself via its distor-
ted fields, so it will need to be supported by some Fsupp to remain at rest in the {yµ}
coordinate system. What we are saying then is that we need a metric that is not in
the Minkowskian form in the relevant frame in order to distort the electromagnetic
fields from the Coulomb form, in such a way that there is a self-force.

We have considered a spacetime that is not actually curved, so that the extension
of Maxwell’s theory is in fact identical to the flat spacetime theory, but the same
arguments apply to any curved spacetime in GR. The difference is only in the de-
tails of the approximation because, in a generally curved spacetime, one can only
find locally inertial frames. Put another way, the SHGF discussed above is only an
approximation to the spacetime in an Earth-based laboratory, for example, due to
variations in the gravitational effects across the laboratory or as time goes by. This
means that the appropriate version MEME of Maxwell’s theory in a locally inertial
frame in the curved spacetime will not look exactly like the usual version of Max-
well’s theory in an inertial frame in flat spacetime. But we will still deduce that,
when a charged sphere (or particle) is prevented from free fall, this will require a
supporting force to overcome self-force effects, and that any self-force contributions
to the inertial mass will be exactly matched by equal self-force contributions to the
passive gravitational mass, as described for the SHGF case.

Note also that, in this view, if the particle is at rest in a globally (locally) inertial
frame in an SHGF (in a generally curved spacetime), i.e., following a geodesic like
(4.15) for the SHGF case, its fields will not be distorted (will be only slightly dis-
torted) from the Coulomb form in that frame, where Maxwell’s equations assume
exactly (approximately) the usual flat spacetime form, so they will not give a net
force on it, and Fsupp must then be zero if (4.25) is to be satisfied. We call this free
fall.

It is worth mentioning that the theory of gravity looks very different in special
relativity [4]. Here spacetime is always flat, with frames in which the metric has the
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Minkowski form, and gravity is a force like any other. This means that electroma-
gnetism can be described by Maxwell’s theory in an inertial frame, even if there is
a source of gravity sitting at the origin of that frame. The charged sphere may be
supported in such a way that it does not move relative to the source of gravity, and
yet be stationary in the inertial frame, and hence not exert any self-forces on itself.

4.3 Status of this Result

One might say that it is not really surprising to deduce that the inertial and passive
gravitational masses are equal on the basis of GR plus SEP, since the whole theory of
GR was inspired by this very observation. There are already two ways in which GR
is considered as an attempt to explain this equality according to certain accounts:

• One could not even formulate the geodesic principle for the motion of massive
particles if this were not the case, so the very possibility of a theory like GR
implies the equality.

• The geodesic principle can be deduced from Einstein’s equations, along with
certain other assumptions, and this is even taken by some as an explanation of
inertia.

So what is the geodesic principle?

4.3.1 Geodesic Principle

This states that, when point particles are not acted upon by forces (apart from gra-
vitational effects), their trajectories take the form

d2xi

ds2 +Γ i
jk

dx j

ds
dxk

ds
= 0 , (4.26)

where xi(s) gives the worldline as a function of the proper time s of the particle and
Γ i

jk are the connection coefficients in the given coordinate system. In the literature,
this is often derived from an action principle. One writes the worldline as a function
xi(λ ) of some arbitrary parameter λ , whence the appropriate action for the worldline
between two points P1 = x(λ1) and P2 = x(λ2) of spacetime is

s(P1,P2) :=
∫ λ2

λ1

(
gi j

dxi

dλ
dx j

dλ

)1/2

dλ =
∫ λ2

λ1

Ldλ =
∫ λ2

λ1

ds , (4.27)

with Lagrangian
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L :=
(

gi j
dxi

dλ
dx j

dλ

)1/2

. (4.28)

The Euler–Lagrange equations extremising the action under variation of the world-
line are

d
dλ

(
∂L
∂ ẋi

)
− ∂L

∂xi = 0 , (4.29)

with ẋi := dxi/dλ , and these lead to the above geodesic equation (4.26).
The action for some particles labelled by a is

A =−∑
a

cma

∫
dsa , (4.30)

where ma is the mass of particle a and sa is its proper time. This is the action because
variation of the worldline of particle a gives its equation of motion as

d2ai

ds2
a

+Γ i
jk

da j

dsa

dak

dsa
= 0 . (4.31)

Likewise, if some of the particles are charged with charge ea for particle a, and there
are some EM fields Fik, one declares the action to be

A =−∑
a

cma

∫
dsa− 1

16πc

∫
FikF ik(−g)1/2d4x−∑

a

ea

c

∫
Aidai , (4.32)

where Ai is a 4-vector potential from which Fi j derives, simply because variation of
the worldline of particle a gives its equation of motion as

d2ai

ds2
a

+Γ i
jk

da j

dsa

dak

dsa
=

ea

ma
F i

j
da j

dsa
, (4.33)

the minimal generalisation of the Lorentz force law to a curved manifold, while
variation of Ai gives the EM field equations as the minimal extension of Maxwell’s
equations to the curved spacetime. Of course, these actions are designed to give
appropriate field equations, and we are just decreeing here that the appropriate field
equation for the particle labelled by a is a geodesic equation, or an equation like
(4.33).

So what is the physical motivation for the geodesic principle? It is claimed here
that the appropriate physical argument supporting (4.26) is an application of the
strong principle of equivalence. This is where we discover exactly how we are to
link what happens mathematically in a curved manifold with measurements in our
own world. We start from an action, but at some point we must say what the point
of contact would be with physical reality. Let us suppose we impose a strong prin-
ciple of equivalence, that is, we say roughly speaking that any physical interaction
other than gravitation behaves in a locally inertial frame as though gravity were ab-
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sent. Relative to such a frame, any particle that is not subject to (non-gravitational)
forces will then move in a straight line with uniform velocity, i.e., it will follow the
trajectory described by

dvi

ds
= 0 , (4.34)

where vi is its 4-velocity. This is expressed covariantly through (4.26). If there are
non-gravitational forces, we start with F = ma in the locally inertial frame and we
find (4.26) with a force term on the right-hand side. It is quite clear that we still have
a version of Newton’s second law F = ma, so the present view is that we have not
explained inertia and inertial effects by this ploy, but merely extended this equation
of motion to the new theory.

It is worth looking more closely at the claim that (4.34) is expressed covariantly
through (4.26). A cheap way is to set the connection coefficients equal to zero in
(4.26). This is basically the observation that the two equations are the same relative
to Cartesian coordinates in a flat spacetime. Such a claim misses out some of the
machinery of the connection construction that lies at the heart of non-Euclidean
geometry, but this is not the place to expose all that. A justification of sorts can be
found in [4, Sect. 2.5].

It is not totally obvious from what has just been said that SEP is absolutely neces-
sary here and some authors would claim that it is not. This will be discussed further
in the following (see in particular Sect. 4.3.3).

4.3.2 Equality of Inertial and Passive Gravitational Mass Revisited

Equation (4.26) is thus taken as the equation of motion of a point particle upon
which no forces are acting, unless one counts gravity as a force. We observe that
there is no mention of any parameters characterising the point particle. In particular
there is no mention of its inertial mass. Of course there is no mention of parame-
ters describing its inner make-up. After all, it is supposed to be a point particle. In
this book, we are considering what would happen to a slightly spatially extended
particle, i.e., with a world tube that intersects spatial hypersurfaces in a small re-
gion rather than a single mathematical point. This object might be spinning in some
sense, or contain a charge distribution, for example. We shall return to this point in
a moment, but let us begin with the disappearance of the inertial mass since this is
directly relevant to the first point mentioned at the beginning of this section.

So where did the inertial mass of the particle go? If we look back to (4.33), viz.,

minertial
a

(
d2ai

ds2
a

+Γ i
jk

da j

dsa

dak

dsa

)
= eaF i

j
da j

dsa
, (4.35)

we find the inertial mass minertial
a multiplying the acceleration term in the equation

to give a force on the right that is determined by an external field Fi j and a coupling
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constant ea characterising the particle. This is a typical equation of motion when
there is some non-gravitational force (in this case electromagnetic) acting on the
particle. Now in Newtonian gravitational theory, if the external field happens to be
a gravitational potential Φ , one gets an equation of motion like this:

minertial
a

(
d2ai

ds2
a

+Γ i
jk

da j

dsa

dak

dsa

)
= mpg

a hi jΦ, j , (4.36)

where mpg
a is the passive gravitational mass of particle a, (hi j) = diag(0,1,1,1), and

Γ i
jk is the connection appropriate to Newtonian spacetime and relative to whatever

coordinates we have chosen to describe it. But due to the observed equality of iner-
tial mass and passive gravitational mass, viz., mpg

a = minertial
a , the coupling factor on

the right-hand side is just the same factor as we have on the left-hand side. The only
relevant characteristic of our point particle thus cancels out.

This explains how the inertial mass disappears from the equation, precisely be-
cause of the observed equality of inertial mass and passive gravitational mass, but
how do we get rid of the gravitational potential we have just introduced? Of course,
we can absorb it into the connection, following the much more detailed account of
all this in [18]. We now have a new connection

Γ i
jk := Γ i

jk +hilΦ,lt jtk , (4.37)

where (ti) := (1,0,0,0), so that ti = ∂ t/∂xi. Equation (4.36) becomes

d2ai

ds2
a

+Γ i
jk

da j

dsa

dak

dsa
= 0 , (4.38)

still in this Newtonian context. So the equality of inertial and passive gravitational
mass allows us to treat the trajectories of particles subjected only to gravitational
effects as geodesics of a non-flat connection, because we do expect this new connec-
tion in (4.37) to be non-flat in general.

As Friedman says in [18], the equality of inertial and passive gravitational mass
implies the existence of a connection Γ such that freely falling objects follow geo-
desics of Γ . This does not work for other types of interaction, where the ratio of
ma := minertial

a to the coupling factor, e.g., ea for a charged particle, is not the same for
all bodies. The worldlines of charged particles in an EM field cannot be construed
as the geodesics of any single connection, because ma/ea in (4.33) varies from one
particle to another.

Put another way, the equality of inertial and passive gravitational mass must be
true if any theory of gravitation like general relativity, in which gravitational inter-
action is explained by the dependence of a nonflat connection on the distribution
of matter, is to be possible. Note in passing that general relativity is not the only
theory of this type. Classical gravitational theory can also be formulated in this
way by taking advantage of the very same equivalence of inertial and passive gra-
vitational mass. Friedman’s book [18] is recommended for anyone who thinks that
Newtonian gravitational theory cannot be given a fully covariant and totally geome-
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tric treatment. The essential difference with general relativity is that, in this treat-
ment of Newtonian gravity, there is a flat connection Γ living alongside the non-flat
connection Γ of (4.37). The deep fact here is that, in general relativity, the non-flat
connection is the only connection of the spacetime.

So what of the first point mentioned at the beginning of this section, namely that
the very possibility of a theory like GR implies the equality of inertial and passive
gravitational mass? Might this not undermine the result of Sect. 4.2 which used GR
and SEP to show that at least the self-force contributions to inertial mass are likely
to equal the self-force contributions to passive gravitational mass? Put like this, we
appear to be assuming the result in order to demonstrate it.

Looking back at Sect. 4.2, what we proposed was a new law (4.25), viz.,

∑
fields

Fself +Fsupp = 0 (4.39)

which would replace Newton’s second law F = ma and its direct extensions to GR
with the help of SEP. Newton’s second law in its usual form follows from (4.39) by
analysing the self-forces into some multiple of the four-acceleration, and as mentio-
ned earlier, the whole problem of the research program suggested in this book is to
show that this is always possible, not just for EM forces, but for the other forces too,
and then to show that there is no other mechanical mass. So a dynamical law, viz.,
(4.39), is still necessary here, but from it we can deduce results that were merely
imposed previously, at least in the case where the inertia is entirely due to self-force
effects.

For one thing, we understand physically why a supporting force is needed, na-
mely to balance self-forces. In GR as it is usually presented, the supporting force
is needed because the particle has non-zero four-acceleration, but we do not know
why a non-zero four-acceleration should require a (supporting) force any more than
we know why an acceleration should require a force in Newtonian physics.

Another point is that self-forces make a distinction between uniform velocities
and changing velocities. The self-force is zero when the particle has a uniform ve-
locity, and only becomes non-zero when the particle velocity is changing. So we
understand from (4.39) why no force Fsupp is required on the particle to keep it in
free fall. (The terminology ‘supporting force’ is something of a misnomer here!)
And we understand the contrast between Newton’s first and second laws, in the
same way as the self-force idea explains this contrast in Newtonian physics.

And finally, although the equality of inertial and passive gravitational mass was
crucial to the very existence of a theory like GR, we do have a mechanism here to
explain why this should be the case. It is not easy to formulate this mechanism in
the context of GR, because there is no such thing as passive gravitational mass once
one has adopted general relativity as the fundamental theory. The best we can do is
an argument of the form leading up to (4.24) on p. 52, which was based on the claim
that the passive gravitational mass mPG would be defined by the proportionality
between the four-acceleration and Fsupp. This argument, like all others presented,
should be regarded critically by the reader.
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4.3.3 Do Einstein’s Equations Explain Inertia?

To come now to the second point listed at the beginning of this section, it turns
out that the geodesic principle is not a principle at all, and neither is it likely to be
any better than an approximation for a real particle that cannot be treated as a ma-
thematical point. For the fact is that the geodesic principle follows from Einstein’s
equations in general relativity, provided that we also have SEP and provided that we
can make suitable assumptions about the particle. Here follows a proof of sorts.

Recall first that Einstein’s equations can be written

Gi j =−κTi j , (4.40)

where

Gi j := Ri j− 1
2

gi jR (4.41)

is the Einstein tensor expressed in terms of the Ricci tensor Ri j and curvature scalar
R, κ is a constant that turns out to be expressible as

κ =
8πG
c4 , (4.42)

and Ti j is the energy–momentum tensor expressing the distribution of mass and
energy in the spacetime.

Now the covariant divergence of the Einstein tensor is zero in many circum-
stances, in particular when something called the torsion is zero. But the torsion is
indeed often zero. In fact, it is sourced by the spin currents of matter in such a way
that, in contrast to curvature, it does not propagate in spacetime, so it could only
be nonzero in regions where there is matter or energy with some rotational pro-
perty. A very clear, though somewhat sophisticated account of all this can be found
in [13, Chap. 5]. Anyway, in a region where there is no spinning matter, Einstein’s
equation (4.40) implies that the covariant divergence of the energy–momentum ten-
sor is zero. This is what we shall use to derive the geodesic ‘principle’.

To do this, we shall consider an almost-pointlike particle. So when almost-point
particles are not acted upon by forces (apart from gravitational effects), we would
like to show that their trajectories take the form

d2xm

ds2 +Γ m
k j

dxk

ds
dx j

ds
= 0 . (4.43)

We consider a small blob of dustlike (i.e., zero pressure) matter with density ρ and
velocity field

vi =
dxi

ds
. (4.44)
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This equation expresses the fact that we view each component dust particle as having
its own worldline xi(s). The energy–momentum tensor for this matter is then

T ik = ρ
dxi

ds
dxk

ds
(4.45)

and we are saying that Einstein’s field equation (4.40) implies that

T ik
;k = 0 . (4.46)

We analyse (4.46) by inserting (4.45) and the result is the geodesic equation (4.26).
For completeness, here is the argument. We have

ρ,k
dxi

ds
dxk

ds
+ρ

(
∂

∂xk
dxi

ds
+Γ i

km
dxm

ds

)
dxk

ds
+ρ

dxi

ds

(
∂

∂xk
dxk

ds
+Γ k

km
dxm

ds

)
= 0 .

(4.47)

If we did not have the idea of a velocity field vi, it would be difficult to interpret
partial derivatives of dxi/ds with respect to the coordinates. But as things are, we
can say

dxk

ds
∂

∂xk
dxi

ds
=

dxk

ds
∂vi

∂xk =
dvi

ds
=

d2xi

ds2 . (4.48)

The terms in the second bracket of (4.47) are

∂vk

∂xk +Γ k
kmvm = divv , (4.49)

and the whole thing can now be expressed by

div(ρv)
dxi

ds
+ρ

(
d2xi

ds2 +Γ i
km

dxk

ds
dxm

ds

)
= 0 . (4.50)

By mass conservation,

div(ρv) = 0 , (4.51)

and the result follows.
This proof purports to show that each constitutive particle of the blob follows

a geodesic. But then we did not allow these particles to jostle one another. For
example, we have zero pressure, as attested by the form of the energy–momentum
tensor in (4.45). And we did not allow the particles to generate any torsion by re-
volving about the center of energy of the blob. And neither did we endow them
with electric charge. It is in this sense that the geodesic ‘principle’ is in fact just an
approximation, unless the test particle is not a blob, but a mathematical point.

Some argue that inertia is explained in general relativity, precisely because of the
above proof (or better variants of it). This point of view is expressed in the philoso-
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phical study by Brown [14, p. 141]. He claims that GR is the first in the long line of
dynamical theories, based on the Aristotelian distinction between natural and forced
motions of bodies, that explains inertial motion. This is not the view taken here, for
reasons to be explained shortly. However, other issues discussed in Brown’s book, in
particular what he refers to as the dynamical approach to spacetime structure, should
mark a turning point in our understanding of relativity theories that is exactly in line
with the approach advocated in the present book, and in particular with the issues
discussed in Bell’s paper [5] and extensions of those points to GR [12].

Concerning the putative explanation of inertial motion according to Brown [14,
Sect. 9.3], inertia in GR is just as much a consequence of the field equations as
gravitational waves, i.e., inertial motion of test particles is just part of the dynamics.
Here is an argument against that view.

Recall the discussion just after (4.33) on p. 55. It was pointed out that actions
like (4.30) and (4.32) are designed to give appropriate field equations, and that the
appropriate field equation for the particle labelled by a is a geodesic equation, or an
equation like (4.33). Now in GR, one adds a gravitational part to the action, viz.,

Agrav :=
c3

16πG

∫
R(−g)1/2d4x . (4.52)

Some textbooks motivate this as follows. When the metric is varied in Agrav, a
constant multiple of the Einstein tensor pops out. The point about this is the obser-
vation that, when the metric is varied in an action like (4.32), the energy–momentum
tensor Ti j pops out. One gets a sum of contributions to this tensor from the matter
as encapsulated in the action term

−∑
a

cma

∫
dsa , (4.53)

and from the EM fields as encapsulated in the action term

− 1
16πc

∫
FikF ik(−g)1/2d4x .

Setting the variation of the full action with respect to the metric equal to zero, one
then obtains the Einstein equations, with the Einstein tensor on one side and the
total energy–momentum on the other side.

Now the covariant divergence of the Einstein tensor is zero (assuming zero tor-
sion) and this could in principle be worrying, because the Einstein equation then
implies that the covariant divergence of the total energy–momentum is zero. Ho-
wever, there is a general result that the energy–momentum tensor derived from an
action of the form

∫
L(−g)1/2d4x (4.54)

by varying the metric always has zero covariant divergence when L is a scalar, and
more sophisticated versions, e.g., invariance of the matter action under the group of
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diffeomorphisms is sufficient to guarantee zero covariant divergence of the corres-
ponding energy–momentum tensor on shell if the torsion is zero [13, Sect. 6.5]. (As
mentioned above, if the torsion is not zero, the covariant divergence of the Einstein
tensor is not zero either. This case is not considered here.) Of course, the action A
in (4.53) does not have the form (4.54), but one expects some general theorem to
ensure that the resulting energy–momentum tensor will have zero covariant diver-
gence on shell, i.e., when the field equations, that is, the geodesic equations, are
satisfied.

So it looks as though the geodesic equations, and their variants with a force on
one side, are built in by construction of the action. It is no surprise therefore that
they should pop out again when we set the covariant divergence of the energy–
momentum tensor equal to zero. Perhaps one should be more suspicious of argu-
ments from actions. They are neat, and bring a level of unity in the sense that one
can derive several dynamical equations from the same action by varying different
items. On the other hand, we are only getting out what we put in somewhere else.

A recent commentator [16] asserts that the motion of massive test particles is
independent of SEP. This refers to the above idea that geodesic motion follows by
conservation of energy–momentum, which in turn follows from Einstein’s equa-
tions, whence the inertia of massive objects is supposed to be explained by the
theory. Here we argue against both conclusions:

(i) independence from SEP, and
(ii) insofar as geodesic motion is a consequence of Einstein’s equations, this ex-

plains inertia.

Note, however, that the paper [16] is highly recommended for a clear account of the
idea advocated by Brown, and also in this book, that the metric tensor in relativity
theories gets its geometric significance through detailed physical arguments.

Regarding (ii), we have just seen a counter-argument. When we wanted to deduce
geodesic motion from Einstein’s equations, we decreed that the energy–momentum
tensor of the test particle was that of a very small cloud of dust, then reasoned
heuristically and took a point-particle limit at the end of a short calculation. Further,
we assumed that the component matter was not spinning in any way, and that the
component particles carried no electric charge. Put like that, one sees how limited
the proof is. No real particle with spatial extent could be like this, and indeed, no
real particle would actually free fall along a geodesic, and nor even would its center
of energy.

In any case, there is another aspect of the model that one ought to justify – one
ought really to explain the choice of energy–momentum tensor. Another proof of
the geodesic principle from Einstein’s equation due to DeWitt is more sophisticated,
using distributions [15]. There one derives the energy–momentum tensor (distribu-
tion) for a point particle by varying the metric in the usual action S =−m

∫
dτ for a

point particle in relativity theory. One then shows that conservation implies the geo-
desic equation. But it would be a circular argument to say that this proves that the
geodesic equation follows from Einstein’s equation, because the action S =−m

∫
dτ
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is designed to deliver the geodesic equation when one varies the particle worldline
of which it is a functional.

In fact, the variational method itself shows what is happening here. The point is
that the action S is invariant under coordinate changes. This alone implies that the
covariant divergence of the energy–momentum tensor derived from it by varying
the metric will be zero if and only if the particle follows a geodesic. It is difficult
to believe that one would really explain inertial behaviour solely by the coordinate
invariance of the action. But of course, as mentioned above, the action is designed
to yield geodesic motion.

Interestingly, and probably significantly, all this assumes there is no torsion, be-
cause it uses the Levi-Civita connection. But torsion is generated by spinning matter
as mentioned above [13, Chap. 5]. This brings us to the claim (i) above that SEP
would not be needed to show that test particles follow geodesics.

In the above demonstration of the geodesic principle, we require the particle to be
moving in a region of spacetime where the torsion is zero, because this is a sufficient
condition for the covariant divergence of the Einstein tensor to be zero. One often
forgets torsion outright and just decrees the connection coefficients to be symmetric
in their two lower indices. However, it is interesting to draw attention to torsion here
because it is precisely spinning matter that generates torsion. Since torsion does not
propagate beyond its sources, one only needs to assume that the test particle (blob)
moves in empty spacetime. But what if the blob is itself spinning?

Now it is known that a spinning blob of matter will not free fall along a geodesic.
The spin angular momentum of the blob couples with the curvature and tweaks it
off the geodesic. How does one show this? One begins with a Lagrangian which
treats the blob as an ensemble of particles, then expands everything about the center
of energy [15]. The best thing would be to include all the electromagnetic forces
holding the particles together, but fortunately one can just make a quasi-rigidity
assumption and go from there. The latter assumption avoids talking about, but ne-
vertheless embodies, non-gravitational forces. It thus assumes, in a very hidden way
admittedly, the strong principle of equivalence.

It is the center of energy of the blob that approximately (but not quite) follows a
geodesic. It seems a remarkable achievement just to get this. But it is not so remar-
kable, because that Lagrangian mentioned in the last paragraph is precisely the one
that is designed to deliver geodesic motion for the constituent particles of the blob,
were they not constrained by quasi-rigidity.

In fact, Butterfield does specify that he is talking about non-rotating test particles
in [16]. But the point remains that one really must ask what is meant by a test
particle. It is supposed to be a mathematical point, but that is an approximation.
And the fact is that all test particles are going to involve non-gravitational forces.
Of course, it is precisely for the blob of dust that one gets one of the derivations,
taking a limit in the end as the size of the blob goes to zero. On the other hand,
any realistic test particle (even with a limit at the end) is going to involve non-
gravitational forces, and will in general be spinning (not spinning would be a very
special and improbable case). Even if not spinning, the general Lagrangian approach
including EM forces is going to predict deviations from the geodesic.
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Note in this context that photons have to follow null curves because of Maxwell’s
equations [17], and this brings in a need for SEP. Now it would be a strange thing
in a way if SEP were required to show that photons have to follow null curves, but
massive particles could get away without having to obey any vestige of the laws
of any of the forces governing their make-up, and hence avoid any need for SEP.
Put another way, if we say that there are no non-gravitational effects to be taken
into account when considering our test particle, then since SEP deals only in non-
gravitational effects, it cannot be needed to say anything about the test particle. This
is pure logic. There is no physics at all in it.

4.4 Active Gravitational Mass

Before leaving the subject of general relativity, it is important to mention the notion
of active gravitational mass. In Newtonian theory, the gravitational force of the Sun,
with mass M¯, on the Earth, with mass MEarth, is of course

F =
GM¯MEarth

R2 , (4.55)

where R is the distance separating the two bodies and G is the gravitational constant.
If one is considering the path of the Earth through space as a result of the gravita-
tional force on it due to the Sun, then M¯ is referred to as the active gravitational
mass of the Sun in Newtonian theory, because this is what is supposed to have an
attractive effect on the Earth as a test particle.

Of course, with the advent of relativity theory, we know that even the radiation in
the Sun adds to the total value of M¯, as does anything in the star that increases its
energy. And the view of what happens here is very different from the view in Newto-
nian physics as described by (4.55). In GR, the active gravitational mass is anything
that curves spacetime, i.e., anything that contributes to the energy–momentum ten-
sor of matter, radiation, or anything else there might be out there.

The point about this is that, in Newtonian physics, one has another great, unex-
plained equality, namely the equality of passive and active gravitational mass, both
of these being equal also to the inertial mass. In this chapter we have indicated a
way one might understand why the passive gravitational mass might be equal to the
inertial mass, but we have not mentioned the other equality. In the view described
here, the active gravitational masses have to do their work before we apply our deri-
vation of the passive gravitational mass. Indeed they have to curve the spacetime, or
at least alter the metric from the Minkowski form. In this sense, active and passive
gravitational mass are not on the same footing in the theory outlined in this chapter.
That aspect of things therefore remains a mystery.
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4.5 The Machian Program and the Brans–Dicke Theory

An interesting discussion of Mach’s principle can be found in Narlikar’s action-
packed book on cosmology [19]. This is a potted version of that account. One can
measure the spin of the Earth about its polar axis either by observing the rising and
setting of the stars, or by observing the gradual rotation of a Foucault pendulum. It is
not obvious that the two methods should give the same result, but they do. The first
method defines a frame relative to the background of distant stars, while the second
is based on the existence of absolute space according to Newton, or the existence of
inertial frames, so that when one is using a rotating frame like the one fixed on the
surface of the Earth, Newton’s laws of motion require us to take the rotation of the
frame into account.

One is thus assuming that the background of distant stars coincides with New-
ton’s absolute space. Realising this, Mach reasoned that Newton’s postulate of abso-
lute space, relative to which Newton’s laws take their simplest form, might be related
in some way to the large scale distribution of matter in the Universe. Actually, there
has been much debate about what Mach actually meant, and what various authors,
such as Einstein himself, took it to mean [18,20], but the basic idea is that the inertia
of a massive particle must somehow originate in an interaction between that particle
and all the other matter in the Universe.

Of course, the absolute space is a problem in itself. How does this frame of
reference obtain its special status in which no inertial forces (as Newton called them)
are required? And how could this frame be identified without recourse to Newton’s
second law, which is based on it? There is the possibility that it is the Universe itself
that provides a background reference frame that may be identified with Newton’s
special frame. It remains of course to formulate this relationship.

Narlikar provides the following idea [19]. He imagines a single body in an other-
wise empty universe. When there are no forces on it, Newton’s second law gives

ma = 0 ,

where m is the inertial mass of the body and a its acceleration. Newton would de-
duce that a = 0, i.e., that the body was moving with uniform velocity relative to
absolute space. But in this empty universe, there is no background relative to which
the velocity could be measured. Saying that a = 0 has no operational meaning here.
In fact, it would be better if a were indeterminate, and the perfect way to obtain that
would be to deduce rather that

m = 0 .

The idea is that our measure of inertia might depend on the existence of the back-
ground in such a way that, in the absence of the background, the measure is zero.

The Newtonian view that inertia is a property of the matter alone is replaced by
the idea that it is a property also of the background provided by the distribution of
matter and energy throughout the whole Universe. On the face of things, one might
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wonder whether general relativity achieves this. After all, the curvature at any space-
time event depends on the energy–momentum tensor in the neighbourhood of that
event, and this tensor is generated by the distribution of matter and energy throu-
ghout the Universe. But the fact is that GR does not achieve the Machian program.
There seem to be three points:

• We do not see how to deduce the inertial mass of a particle from the local values
of the energy–momentum tensor.

• We do not explain why the law of motion of a particle should be basically just an
extension of F = ma.

• Absolute rotation is independent of external masses because, if two spheres S1
and S2 were alone in the Universe, in relative rotation about the axis joining their
centers, it would still be possible for one and only one of them to experience
distorting differential effects.

A deeper discussion of the third point can be found in [18, Sect. V.5].
The Brans–Dicke theory tries to implement the idea of an inertial mass that can

vary as a test particle moves through spacetime, not just as a result of its changing
velocity, but due to the presence of a scalar field φ that permeates spacetime and
results somehow from the overall distribution of matter. It will be interesting to
review some simple features of this theory, while a more detailed account can be
obtained from [19].

In fact, Brans and Dicke wanted a framework in which the gravitational constant
G would arise from the structure of the Universe, whence a changing G would be
viewed as a Machian consequence of a changing Universe. For various reasons, they
postulated that G should behave as the reciprocal of a scalar field φ , viz., G∼ φ−1.
They then wrote down an adapted version of the Einstein–Hilbert action (4.52) and
derived a variant of Einstein’s equation for the curvature (now depending on φ as
well as the energy–momentum tensor), and a field equation for φ in which it is
sourced by the trace of the energy–momentum tensor.

Solar System observations require the proposed variation of G to be very small,
and Narlikar considers cosmological implications which can nevertheless be signi-
ficant. We cannot go into the details here, but will concentrate on certain qualitative
features of the theory. It turns out that the Brans–Dicke theory can be expressed
as a theory in which G is constant but a particle’s mass varies depending on the
spacetime event at which it is located. This is what we would like to sketch here.

If g is the metric relative to which the Brans–Dicke theory has been formulated,
we consider a conformally equivalent metric ḡ defined by

ḡ := Ω 2g , (4.56)

for some non-zero scalar field Ω , and consider the possibility that a particle might
move through the ḡ spacetime with a variable mass that is some scalar function
of its location in spacetime. Let us find the equation for its worldline by the usual
variation of the action
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∫ s̄1

s̄0

mcds̄ ,

where s̄ is proper time along the worldline, as defined by the barred metric.
As usual, we vary the worldline x(s̄), keeping the endpoints x0 = x(s̄0) and x1 =

x(s̄1) fixed. We must remember to keep m inside the integral for this exercise, since
it is a function of space and time coordinates. We shall carry out the derivation
without mentioning the explicit form of this function. One set of terms comes from

c
∫ s̄1

s̄0

mδ
(

ḡi j
dxi

ds̄
dx j

ds̄

)1/2

ds̄ ,

which is just

c
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m
2

(
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)−1/2 [
δḡi j

dxi

ds̄
dx j
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+2ḡi jδ

(
dxi
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)
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]
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This in turn can be written

c
2

∫ s̄1

s̄0

m
[

ḡi j,kδxk(s̄)
dxi

ds̄
dx j

ds̄
+2ḡi j

(
d
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δxi
)

dx j
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]
ds̄ . (4.57)

The second term gets integrated by parts in quite the usual way, so that the whole
thing becomes

c
∫ s̄1

s̄0

m
(

1
2

ḡk j,i
dxk

ds̄
dx j

ds̄
− ḡi j,k

dxk

ds̄
dx j

ds̄
− ḡi j

d2x j

ds̄2

)
δxi(s̄)ds̄ ,

terms arising in the standard constant mass situation, plus another term arising be-
cause the mass gets caught up in the integration by parts, viz.,

−c
∫ s̄1

s̄0

dm
ds̄

ḡi jδxi dx j

ds̄
ds̄ . (4.58)

This new term can be reexpressed as

−c
∫ s̄1

s̄0

∂m
∂xk ḡi j

dxk

ds̄
dx j

ds̄
δxi ds̄ . (4.59)

But there is a further new term arising from

c
∫ s̄1

s̄0

ds̄δm = c
∫ s̄1

s̄0

∂m
∂xi δxi ds̄ .

This can also be written

c
∫ s̄1

s̄0

ds̄δm = c
∫ s̄1

s̄0

m(lnm),i δxi ds̄ .



68 4 A Brief Excursion into General Relativity

We now have all the terms from the variation in the right form to deduce the equation
of motion of the variable mass particle, viz.,

1
2

ḡk j,i
dxk

ds̄
dx j

ds̄
− ḡi j,k

dxk

ds̄
dx j

ds̄
− ḡi j

d2x j

ds̄2 = ḡi j
dxk

ds̄
dx j

ds̄
(lnm),k− (lnm),i .

After a slight reorganisation,

d2xm

ds̄2 + Γ̄ m
k j

dxk

ds̄
dx j

ds̄
=

(
ḡmk− dxm

ds̄
dxk

ds̄

)
(lnm),k (4.60)

where we have used the usual definition of the Levi-Civita connection Γ̄ for the
barred metric, viz.,

Γ̄ m
k j :=

1
2

ḡmi
(

∂ ḡik

∂x j +
∂ ḡi j

∂xk −
∂ ḡk j

∂xi

)
. (4.61)

This is still completely general, in the sense that we have not yet specified the space-
time dependence of m. The varying mass acts rather like a perturbing force through
the terms on the right-hand side of (4.60).

Let us now compare (4.60) with the geodesic equation relative to the unbarred
metric, viz.,

d2xm

ds2 +Γ m
k j

dxk

ds
dx j

ds
= 0 . (4.62)

The idea is, of course, to rewrite this in terms of barred quantities, using the fact that
ds = Ω−1ds̄. To begin with,

d2xm

ds2 = Ω
d
ds

(
Ω

d
ds

xm
)

= Ω 2 d2xm

ds̄2 +ΩΩ,k
dxk

ds̄
dxm

ds̄
.

Now the barred and unbarred Levi-Civita connections, as calculated from (4.61) and
a similar relation for the unbarred metric, are related by

Γ̄ i
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Ω,k

Ω
δ i
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so

Γ m
k j

dxk

ds
dx j

ds
= Ω 2Γ̄ m

k j
dxk

ds̄
dx j

ds̄
−2Ω 2 dxm

ds̄
dx j

ds̄
(lnΩ), j +gmn(lnΩ),n .

Putting this together,
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In other words, the worldline with equation (4.62) relative to metric g has equation
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d2xm

ds̄2 + Γ̄ m
k j

dxk

ds̄
dx j

ds̄
=

Ω,k

Ω
dxk

ds̄
dxm

ds̄
− ḡmn(lnΩ),n ,

relative to the metric ḡ. Alternatively, this may be written

d2xm

ds̄2 + Γ̄ m
k j

dxk

ds̄
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ds̄
=

(
dxm

ds̄
dxk

ds̄
− ḡmk

)
(lnΩ),k (4.63)

This is actually quite general, for any conformal transformation

ḡmn = Ω 2gmn .

Suppose now that we want this to look (relative to ḡ) like the trajectory of a variable
mass particle. Comparing (4.60) and (4.63), we must have

(
ḡmk− dxm

ds̄
dxk

ds̄

)
(lnm),k =

(
dxm

ds̄
dxk

ds̄
− ḡmk

)
(lnΩ),k .

We conclude that this is the case if and only if

(lnm),k =−(lnΩ),k ∀k .

This implies that mΩ is constant.
We thus take the following view. Relative to the metric ḡ, a particle has mass

m = m0/Ω , for some constant m0, and follows the strange worldline (4.60), which
becomes the worldline

d2xm

ds2 +Γ m
k j

dxk

ds
dx j

ds
= 0 , (4.64)

when expressed relative to g. It remains only to choose a scalar function Ω with
some relevance to the Brans–Dicke formulation, but it is worth stressing that this
choice is not essential to the arguments in this section. Indeed, the above arguments
are completely general for all conformal transformations. Relative to one metric g,
massive particles and light follow certain paths. Relative to a conformally equivalent
metric ḡ, the light paths are the same, and the paths of massive particles look as
though their masses change in such a way that mΩ is constant.

Now it turns out [19] that, if we consider a conformally equivalent metric ḡ defi-
ned by

ḡ := Ω 2g , Ω 2 :=
φ
φ̄

, (4.65)

where φ̄ is a constant and φ is the special scalar field introduced originally by Brans
and Dicke to obtain a varying gravitational ‘constant’, then the Brans–Dicke uni-
verse would appear to be general relativistic in the barred view, in the sense that
we retrieve something resembling Einstein’s equation for the barred curvature. But
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what we have shown above is that, in the ḡ view, particles have to be attributed
masses varying in the way suggested, viz.,

m = m0

(
φ̄
φ

)1/2

=
m0

Ω
, (4.66)

if their worldlines are to remain geodesic for g. The logic is therefore this: we ob-
serve that particles follow geodesic worldlines in the Brans–Dicke universe with
metric g, but we prefer to use a conformally equivalent metric ḡ in which the gra-
vitational coupling between massive objects is constant, and relative to this metric,
the particles would appear to move as if they had a varying mass.

Is there any way of understanding the ḡ model physically? Here is a rather heu-
ristic argument. In the Newtonian approximation for gravitational effects, the force
between two active gravitational masses m1 and m2 is proportional to Gm1m2. Now
we have made the hypothesis that G is actually a function of spacetime, going as
φ−1. We might imagine taking a new view of this situation in which

G = G0
φ̄
φ

,

for some spatiotemporal constants G0 and φ̄ . We then absorb φ equitably into
the two masses, so that we now have spatiotemporally varying active gravitatio-
nal masses. Functionally, they go as m1(φ̄/φ)1/2 and m2(φ̄/φ)1/2. At this point we
would make precisely the choice in (4.66). Of course, there is a more sophisticated
GR version of this involving the Brans–Dicke extension of Einstein’s equation [19].

The reason for discussing all this was just to see whether any progress could
be made toward understanding inertia by this kind of theory. A very interesting
point about the above discussion is that we have a clear link between two quanti-
ties which are only coincidentally related in general relativity, viz., the inertial and
active gravitational masses. However, we may make a serious criticism of the idea
that this method somehow explains inertial mass as being caused by the large scale
distribution of matter and energy in the universe, in other words, of the idea that it
implements a Machian program. We have seen that there is a view of things, the ḡ
view, in which particles move around as though their inertial masses were a func-
tion of their space and time coordinates. But this does not change the fact that their
trajectories are given by an equation of the type

m
(
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All we have changed from the standard situation, where the equation would be

m
(
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ds̄2 + Γ̄ m
k j

dxk

ds̄
dx j

ds̄

)
= 0 , (4.67)
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is that the otherwise unexplained inertial mass is now allowed to vary! For example,
we have not explained the origin of m0 in (4.66), and the equation (4.67) is still
basically the same, with standard second order terms. It is the fact that it is second
order with this particular structure which means that accelerations cannot just be
viewed as a relative thing, and which compels us to introduce inertial forces when
we do not take normal coordinates at the point of observation. When there are real
physical forces (apart from gravity, which has been geometrised away and is no
longer considered to be a force), we still basically have Newton’s equation F = ma.
Nothing really seems to have changed.

In fact, a Machian program needs to explain why we have this type of equation at
all, a much bigger project than has been undertaken here! But what hypothesis led
us to introduce this equation for particle paths? We originally said that particles had
to follow geodesics in the g view, so that when they were not acted upon by forces
(apart from gravitational effects), their trajectories would take the form

d2xm

ds2 +Γ m
k j

dxk

ds
dx j

ds
= 0 . (4.68)

Why did we make this our hypothesis? Certainly, it arises from a variation of the
action, but that action was specifically designed to produce this result. Is there some
better explanation?

What we must remember here is that the theory is not an application of general
relativity, although it could be said to be a variant of general relativity. We started
from an action, but we did not say what the point of contact would be with physical
reality. Let us suppose we impose a strong principle of equivalence, that is, we say
that any physical interaction other than gravitation behaves in a locally inertial frame
as though gravity were absent. We impose this principle relative to the g metric.
Relative to such a frame, any particle will then move in a straight line with uniform
velocity, i.e., it will follow the trajectory described by

dvi

ds
= 0 , (4.69)

where vi is its 4-velocity. This is expressed covariantly through (4.68). If there are
non-gravitational forces, we start with F = ma in the locally inertial frame and we
find (4.68) with a force term on the right-hand side. It is quite clear that we still
have F = ma. In other words, we may have found a way for the inertial mass to
vary, but we have not explained inertia and inertial effects. The basic equation is
still Newton’s equation.

4.6 Conclusion

Of course the view advocated here is that one might make better progress in ex-
plaining inertia by paying more attention to the fact that test particles are not likely
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to be well modelled by mathematical points. We have the concrete example of the
spinning particle and the effect of curvature on its motion. A similar effect occurs
when the particle is a source of some classical force field, typically electromagne-
tic. The spatially extended particle then exerts forces on itself and in simple cases
it can be shown that these forces oppose acceleration in flat spacetime and explain
why a force is needed to keep the particle off a geodesic in curved spacetime. If all
inertia were due to these self-forces, the geodesic equation, or relevant extension of
F = ma, would then be replaced by an equation of the form ∑F = 0, where the F
summed over include self-forces.

Treating elementary particles like electrons as spatially extended will not make
it easier to model them physically, and the point particle approximation has proven
its worth in many ways. The idea in this book is not to reject all the successes
of point particle models. And furthermore, we shall only be considering classical
theory here, so the wonderfully successful world of quantum theory will barely get
a mention. But the origin of inertia is nevertheless worth the detour, and once a
classical explanation is found, there is no obvious reason why a quantum version of
it should not be constructed.



Chapter 5
Momentum and Energy in the EM Fields
of a Charge Dumbbell

In this chapter we are going to carry out similar calculations to those in Sects. 3.1
and 3.2, but this time we treat the electron as consisting of two spherical shells of
charge, each of radius a, whose centers are separated by a distance d À a when the
system is at rest in an inertial frame. Each charge shell contains a total charge qe/2,
uniformly distributed over the shell.

This is not quite the toy electron of Sect. 3.7, which consisted of two point
charges qe/2, separated by distance d when the system is at rest in an inertial frame.
The idea in this book is that one should do away with point particles. The point par-
ticle idea is just a useful approximation. In fact, we apply it in Sect. 5.1 to obtain the
energy in the fields of the charge dumbbell due to bringing together the two com-
ponent charges. Of course, there is more energy in the fields due to assembling the
‘point’ charge components, and we obtained that in Sect. 3.1 under the assumption
that they were actually spherical charge shells.

In Sect. 5.2, the charge dumbbell is set in motion along its axis, with a constant
velocity, and we obtain the momentum in the EM fields in order to deduce a
momentum-derived EM mass as in Sect. 3.2. In Sect. 5.3, the charge dumbbell is set
in uniform velocity motion perpendicularly to its axis for the same purpose, and we
find a different momentum-derived EM mass! This is one of the interesting results
with the toy electron: it does not have spherical symmetry like the spherical charge
shell, and we find that the momentum-derived EM mass depends on the direction in
which the system is moving in relation to its own structure.

5.1 Energy Considerations

When we calculated the energy in the electromagnetic field surrounding a stationary
electron, treated as a spherical shell of charge of radius a, we found (see Sect. 3.1)

Uelectron =
1
2

e2

a
, (5.1)
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having made the definition e2 := q2
e/4πε0. If we divide this by c2 we get the mass

equivalent [the energy-derived EM mass of (3.26) on p. 40]

mEDM
EM =

1
2

e2

ac2 . (5.2)

This is not the same as the momentum-derived electromagnetic mass for the same
system, which is [see (3.10) on p. 35]

mMDM
EM =

2
3

e2

ac2 . (5.3)

The momentum-derived electromagnetic mass is bigger than the energy-derived
electromagnetic mass by a factor of 4/3.

A similar thing happens with the two-point model. The energy required to bring
the second charge concentration from infinity to a distance d from the first is

U(d) =−
∫ d

∞

q2
e

16πε0

1
x2 dx =

e2

4d
. (5.4)

The mass equivalent is e2/4dc2. Of course, a lot more energy would be required
to assemble the much smaller charge shells, as can be seen from (5.2). What we
find here is a hierarchy of contributions to the energy-derived EM mass, inversely
proportional to the spatial dimensions of the construction level. We shall express
this by writing

mEDM
EM (level d) =

e2

4dc2 (5.5)

but bearing in mind that there are other contributions to mEDM
EM from any smaller

charge assemblies making up the system.
Now we shall find that, when the system moves along its axis, the contribution

to the momentum-derived electromagnetic mass from the construction level with
spatial dimension d is twice the value in (5.5) (see Sect. 5.2), but when the system
moves perpendicularly to its axis, we do get the same value for the two ways of
deriving this contribution to the EM mass (see Sect. 5.3).

According to Feynman, the Poincaré stresses have to be involved in the model to
get agreement between energy-derived and momentum-derived contributions to the
EM mass [2, Sect. 28.4]. Naturally, the Poincaré stresses, which we shall usually call
binding forces, will themselves be related to fields, and these fields will also contri-
bute to the system’s inertia. Feynman says that the complexity of the approach rules
it out as a viable alternative. However, this amounts to keeping the point particle
model of the electron, which is what we hope to contest in this book. We shall come
back to the notorious discrepancy between the energy- and momentum-derived EM
masses in Chap. 11.
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A B
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dγ−1

1

Fig. 5.1 Charge dumbbell in motion along its axis with uniform velocity v, hence contracted by a
factor γ−1. The charge shells are ellipsoidal

5.2 Longitudinal Motion of the Dumbbell

We assume that the electron is made up of two shells of charge, each being a uniform
distribution of charge qe/2. One is taken to be centered on x(t) = vt and the other
on x(t) = vt +d/γ (see Fig. 5.1). Note that the rest length of the system is d, so we
are assuming a FitzGerald contraction.

Let us first set up a suitable notation. The charge concentrations are labelled A
and B, and the line joining them, which is also the axis of motion, will be the x axis.
Each charge concentration produces electric and magnetic fields, denoted EA, BA,
EB, and BB. The total fields are

E = EA +EB , B = BA +BB . (5.6)

We know what all these fields are [see (2.73) and (2.74) on p. 28]. For instance, we
have

EAx =
qγ(v)
4πε0

x− vt
[γ2(x− vt)2 + y2 + z2]3/2 , (5.7)

EAy =
qγ(v)
4πε0

y
[γ2(x− vt)2 + y2 + z2]3/2 , (5.8)

EAz =
qγ(v)
4πε0

z
[γ2(x− vt)2 + y2 + z2]3/2 , (5.9)

and likewise

EBx =
qγ(v)
4πε0

x− vt−d/γ
[γ2(x− vt−d/γ)2 + y2 + z2]3/2 , (5.10)

EBy =
qγ(v)
4πε0

y
[γ2(x− vt−d/γ)2 + y2 + z2]3/2 , (5.11)

EBz =
qγ(v)
4πε0

z
[γ2(x− vt−d/γ)2 + y2 + z2]3/2 , (5.12)
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where q = qe/2. Note that EB lies radially outward from the present position of B
at vt +d/γ on the x axis. The magnetic fields are

BA =
v×EA

c2 , BB =
v×EB

c2 . (5.13)

These formulas are valid outside each ellipsoidal charge shell.
We now come to the most remarkable point about this double system. Each pair

EA, BA, and EB, BB has an associated momentum density gA, gB given by [see
(2.39) on p. 12]

gA = ε0EA×BA , gB = ε0EB×BB . (5.14)

But the momentum density of the combined system is not at all the mere sum of
these. There is interference, just as in quantum theory, and this is going to alter the
electromagnetic contribution to the inertial mass when it is derived from momen-
tum considerations! So it is interference between the fields that leads to a different
electromagnetic contribution to inertial mass. Let us investigate this quantitatively.

For the combined system,

g = ε0E×B

= gA +gB + ε0EA×BB + ε0EB×BA . (5.15)

We are thus going to get the following momentum in the electromagnetic fields:

p = pA +pB + ε0

∫

all space
[EA×BB +EB×BA] dV , (5.16)

where, in the non-relativistic approximation, we have already found [see (3.9) on
p. 35]

pA = pB =
2
3

(e/2)2

ac2 v . (5.17)

Note that the sum of pA and pB comes to only half what we had when all the charge
was evenly distributed around a single spherical shell. This has no particular inter-
pretation. For example, it does not mean that we have gained or lost momentum.
Each spatial distribution taken to represent the electron gives a different model. For
example, we could halve the value of a in the present case to get back the total
spherical shell contribution to the momentum-derived electromagnetic mass.

Our task is thus to evaluate the integral in (5.16). We will then find out how the
momentum-derived electromagnetic mass contribution from a spatial structure of
dimension d compares with that from spatial structures of dimension a within the
same system.

It turns out that the geometry of the situation is particularly simple. Note that, as
far as the fields outside the charge shells are concerned, we may treat the latter as
point charges at vt and vt + d/γ . Then it is easy to see that the two magnetic field
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A B
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EB

P
•
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Fig. 5.2 Charge dumbbell in motion along its axis with uniform speed v. The fields outside the
charge shells are the same as if the latter were replaced by point charges qe/2 (A and B). The
diagram shows why the magnetic field vectors at the given field point must be parallel. In fact,
both BA = v×EA/c2 and BB = v×EB/c2 point up out of the page. This is because, for any
choice of field point P, the three vectors EA, EB, and v are coplanar. Note that the electric fields
EA and EB at P lie along AP and BP, respectively, i.e., they point from the current positions of the
charges, because the latter have uniform velocities

vectors at a given field point outside the charge shells are parallel (see Fig. 5.2). Here
is a mathematical proof. Using the fact that EB is radial from the current position of
charge B,

EB = EB
rB

rB
=

EB

rB
[rA−dv/γv] ,

where rB is the vector from B to the field point, and rA the vector from A to the field
point (see Fig. 5.2). Now we have

BB =
v×EB

c2 =
EB

rBc2 v× rA

=
EB

rBc2 v×EA
rA

EA

=
EB

EA

rA

rB
BA .

An interesting consequence of this is that

EA×BB =
EB

EA

rA

rB
EA×BA . (5.18)

Likewise,
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BA =
EA

EB

rB

rA
BB , (5.19)

and hence,

EB×BA =
EA

EB

rB

rA
EB×BB . (5.20)

The integral we seek to evaluate can be written

I :=
∫

all space

[
EB

EA

rA

rB
gA +

EA

EB

rB

rA
gB

]
dV . (5.21)

Now the integral of gA had to be cut off near A, whereas it converged near B. What
can we say about the integral of

EB

EA

rA

rB
gA

at these points? It will turn out that there is no singularity at either A or B and we
shall be able to simplify the integration by integrating over all space, neglecting the
contributions from the excluded spheres (ellipsoids) at A and B.

The time has come to put in explicit formulas. Consider the plane containing A,
B, and the field point. Taking the axis of motion as the x axis,

v =
(

v
0

)
, rA =

(
rA cosθA
rA sinθA

)
, rB =

(
rA cosθA−d/γ

rA sinθA

)
, (5.22)

where θA is the angle shown in Fig. 5.2. In this notation, A is at (vt,0,0) and B is at
(vt +d/γ,0,0). We can also write

rA =




x− vt
y
z


 , rB =




x− vt−d/γ
y
z


 = rA−




d/γ
0
0


 . (5.23)

The magnetic field BB sticks vertically out of the plane of Fig. 5.2, and has magni-
tude

BB =
vEB

c2 sinθB , (5.24)

where θB is the angle between the x direction (along v) and the vector rB from B to
the field point, as shown in Fig. 5.2. The magnitude of ε0EA×BB is then

|ε0EA×BB|= ε0v
c2 EAEB sinθB . (5.25)

This vector points down from the field point obliquely towards the axis of motion,
in fact, making an angle of θA to the vertical, as can be seen from Fig. 5.2. When we
integrate around the axis of motion, only the components along that axis actually
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contribute, the others cancelling by symmetry. We therefore multiply the above ma-
gnitude by a factor of sinθA to pick up this component, and just integrate that. This
is a key point again. The resulting contribution to the field momentum is along the
direction of motion.

This brings us to the following contribution to the integrand:

ε0v
c2 EAEB sinθA sinθB . (5.26)

We could have deduced this from (5.18), viz.,

EA×BB =
EB

EA

rA

rB
EA×BA . (5.27)

We have already seen in Sect. 3.2 that ε0EA×BA leads to an integrand

ε0vE2
A

c2 sin2 θA .

Hence, ε0EA×BB is going to give an integrand

ε0vEAEB

c2 sin2 θA
rA

rB
.

However, it is obvious from Fig. 5.2 that

rA sinθA = rB sinθB .

We arrive at the same answer.
Note that (5.26) is perfectly symmetrical in A and B. Checking carefully, we find

that ε0EB×BA contributes exactly the same quantity to the integrand. We now have

I =
2ε0v
c2

∫

all space
EAEB sinθA sinθB dV . (5.28)

Note that this result holds just as well in both the relativistic case and the non-
relativistic case.

5.2.1 Non-Relativistic Calculation

We shall now assume that v¿ c, whence γ ≈ 1, and take

EA ≈ qe/2
4πε0r2

A
, EB ≈ qe/2

4πε0r2
B

. (5.29)

We shall use integration variables r := rA and θ := θA. The volume element is
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dV = 2πr2 sinθ dθ dr .

We can write

EB =
qe/2

4πε0
[
(r cosθ −d)2 + r2 sin2 θ

] , (5.30)

and since rB sinθB = r sinθ ,

sinθB =
r sinθ

[
(r cosθ −d)2 + r2 sin2 θ

]1/2 . (5.31)

Putting all these ingredients together, we find

I =
q2

ev
16πε0c2

∫

all space

r sin3 θ
[
r2−2dr cosθ +d2

]3/2 dθ dr . (5.32)

We can now justify a claim made earlier, which allows us to integrate over all space,
even the interiors of the two small spheres A and B. Note that the integrand has no
singularities. When r = 0 this is clear. When r = d and θ = 0, the denominator looks
problematic, but we have a term going as θ 3 in the numerator.

We treat the integral over r as having the form

I1 =
∫ ∞

0

Ar
[r2−2Br +C]3/2 dr , (5.33)

where A := sin3 θ , B := d cosθ and C := d2. The denominator is a power of

(r−B)2 +D2 , where D := d sinθ , D2 = C−B2 .

Put X := r−B so that dr = dX and

I1 =
∫ ∞

−B

A(X +B)
[X2 +D2]3/2 dX

= A
[
−(X2 +D2)−1/2

]∞

−B
+AB

∫ ∞

−B

1
[X2 +D2]3/2 dX .

We now substitute X = D tanα so that

dX = D(1+ tan2 α)dα .

What looks as though it will become rather complicated soon simplifies to give

I1 =
A

[B2 +D2]1/2 +
AB
D2

[
1+

B/D√
1+B2/D2

]
. (5.34)

Decoding this back to the original variables, we have
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I =
q2

ev
16πε0c2d

∫ π

0

[
sinθ +

1
2

sin2θ
]

dθ . (5.35)

Note that we now have the 1/d dependence. Finally,

I =
q2

ev
8πε0c2d

. (5.36)

Replacing q2
e/4πε0 by e2, we have the momentum in the electromagnetic fields

according to (5.16), viz.,

p = pA +pB +
e2v

2c2d
, (5.37)

where

pA = pB =
2
3

(e/2)2

ac2 v . (5.38)

Hence,

p =
4
3

(e/2)2

ac2 v+
e2v

2c2d
. (5.39)

The momentum-derived electromagnetic mass has a component from each level of
structure, increasing as the dimension of the structure decreases. Here we note that

mMDM
EM (level d) =

e2

2dc2 (longitudinal motion) (5.40)

Comparing with (5.5) on p. 74, we find once again that we have a discrepancy
between the momentum- and energy-derived EM masses. This will be explained
in Chap. 11.

5.2.2 Relativistic Calculation

We now return to (5.28) and attempt to integrate in the general case, where v may
be similar to c. Given the simplicity of the last result, we expect to obtain the elec-
tromagnetic mass contribution from the d structure with a factor of γ(v), rather as
happened in (3.24) on p. 37.

In the relativistic case we still have (5.16), viz.,

p = pA +pB + ε0

∫

all space
[EA×BB +EB×BA] dV , (5.41)

but now
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pA = pB =
2
3

(e/2)2

ac2 γ(v)v . (5.42)

Likewise, we still have (5.28), viz.,

I =
2ε0v
c2

∫

all space
EAEB sinθA sinθB dV , (5.43)

where I is the integral in (5.41).
At the beginning of this section, we already mentioned the problem of the system

length. Just as we allowed the charge spheres to FitzGerald contract, we must expect
the present system to contract in motion. This is an assumption, but a very natural
one. It amounts to saying that the binding forces (or Poincaré stresses) holding the
system together despite the electromagnetic repulsion are Lorentz covariant. In other
words, we make the physical hypothesis that, if d is the rest length of the system,
then its length in motion will be d/γ . Of course, for the non-relativistic calculation,
this had no effect on the final answer, because we set γ = 1 in all formulas.

By (5.7–5.12), the magnitudes of the electric fields are

EA =
γqe/2
4πε0

[
(x− vt)2 + y2 + z2

]1/2

[
γ2(x− vt)2 + y2 + z2

]3/2 , (5.44)

EB =
γqe/2
4πε0

[
(x− vt−d/γ)2 + y2 + z2

]1/2

[
γ2(x− vt−d/γ)2 + y2 + z2

]3/2 . (5.45)

We are going to need suitable integration variables, and we also need to express
sinθA and sinθB. One piece of good fortune that carries over from the non-
relativistic case is that the integrand has no singularities and we do not need the
cutoffs around A and B. If we assume a ¿ d, we can just integrate over all space,
including the points x = vt and x = vt +d/γ where A and B happen to be situated at
time t.

Let us introduce a new variable

X := γ(x− vt) , dX = γdx . (5.46)

Then

dV =
dXdydz

γ
. (5.47)

We also introduce

R := (X2 + y2 + z2)1/2 , X = Rcosθ ′ , (y2 + z2)1/2 = Rsinθ ′ . (5.48)

As before, R and θ ′ are length and angle in the (X ,y,z) space. The volume element
in this space is



5.2 Longitudinal Motion of the Dumbbell 83

dXdydz = 2πR2 sinθ ′dθ ′dR . (5.49)

Now back in the (x,y,z) space,

sinθA =
(y2 + z2)1/2

[(x− vt)2 + y2 + z2]1/2 . (5.50)

Likewise,

sinθB =
(y2 + z2)1/2

[(x− vt−d/γ)2 + y2 + z2]1/2 . (5.51)

When we work out EAEB sinθA sinθB, some of the awkward factors cancel, and we
find

EAEB sinθA sinθB =
γ2q2

e/4
16π2ε2

0

y2 + z2

[
γ2(x− vt)2 + y2 + z2

]3/2[γ2(x− vt−d/γ)2 + y2 + z2
]3/2 .

(5.52)

Note that

γ2(x− vt−d/γ)2 = (X−d)2 .

Hence,

EAEB sinθA sinθB =
γ2q2

e/4
16π2ε2

0

sin2 θ ′

R[R2−2dX +d2]3/2 , (5.53)

and we soon deduce that

I =
q2

eγ(v)v
16πε0c2

∫

all space

Rsin3 θ ′
[
R2−2dRcosθ +d2

]3/2 dθ ′ dR . (5.54)

This should be compared with (5.32). We have exactly the same integral, even
though the meaning of the dummy variables has changed, with the introduction
of a factor of γ(v).

We conclude that in the general case where v may attain relativistic values,

p =
4
3

(e/2)2

ac2 γ(v)v+
e2γ(v)v

2c2d
. (5.55)

As before, the electromagnetic mass has a component from each level of structure,
increasing as the dimension of the structure decreases. Note also that we have found
the same contribution e2/2c2d as in (5.40), but now including the usual Lorentz
factor:

mMDM
EM (level d) =

e2

2dc2 γ(v) (longitudinal motion) (5.56)



84 5 Momentum and Energy in the EM Fields of a Charge Dumbbell

5.3 Transverse Motion of the Dumbbell

There is an obvious question concerning our two-point system, since it picks out a
direction in space, unlike the small spherical shells. Up to now we have conside-
red motion along the line joining the ‘point’ charges. We might wonder, however,
whether we would get the same momentum in the fields if the system were to move
in a direction perpendicular to the system axis. If not, it would seem that electro-
magnetic mass could vary with direction for non-spherically symmetrical charge
distributions. Let us therefore carry out such a calculation. We will treat only the
relativistic case.

We place A at (vt,0,0) and B at (vt,0,d) (see Fig. 5.3). The vectors from A and
B to the field point are

rA =




x− vt
y
z


 , rB =




x− vt
y

z−d


 , so that rA− rB =




0
0
d


 . (5.57)

Note that the electric fields are still radial from the point where the charge is located
now, i.e.,

EA =
EA

rA
rA , EB =

EB

rB
rB . (5.58)

As before, the magnetic fields are given by

BA =
v×EA

c2 , BB =
v×EB

c2 , (5.59)

where v is still taken to be in the x direction. This time, however, the two magnetic
fields are no longer parallel and it is preferable to adopt a purely vectorial analysis.
Indeed, it is this fact that compels us to carry out the φ integration around the axis
of motion, rather than just appeal to some axial symmetry.

We have

BB =
EB

rBc2 v× rB

=
EB

rBc2 v×

rA−




0
0
d







=
EB

EA

rA

rB
BA +

EBvd
rBc2




0
1
0


 . (5.60)

This also implies the symmetrical result
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A
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EA

EB

P
•

1

Fig. 5.3 Charge dumbbell in motion perpendicular to its axis with uniform speed v. The fields
outside the charge shells are the same as if the latter were replaced by point charges qe/2 (A and
B). The diagram shows why the magnetic field vectors BA = v×EA/c2 and BB = v×EB/c2 at
the given field point are not generally parallel. Note that the electric field vectors EA and EB lie
along AP and BP, respectively, i.e., they point from the current positions of the charges, because
the latter have uniform velocities. They are clearly not generally coplanar with v

BA =
EA

EB

rB

rA
BB− EAvd

rAc2




0
1
0


 . (5.61)

The momentum in the fields is calculated as usual from

p = ε0

∫

all space
(EA +EB)×(BA +BB) dV (5.62)

= pA +pB + ε0

∫

all space
[EA×BB +EB×BA] dV ,

where

pA = ε0

∫

all space
EA×BA dV , pB = ε0

∫

all space
EB×BB dV , (5.63)

and we find as before that

pA = pB =
2
3

(e/2)2

ac2 γ(v)v . (5.64)

Note that the integration is not quite over all of space, since we omit the interiors of
the small spherical (ellipsoidal) shells of charge.

Let us now calculate one of the terms in the remaining integral. We have
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EA×BB =
1
c2 EA×(v×EB) =

1
c2 [(EA·EB)v− (EA·v)EB] , (5.65)

and hence,

EA×BB +EB×BA =
1
c2 [2(EA·EB)v− (EA·v)EB− (EB·v)EA] . (5.66)

The first term here will give a momentum contribution along v, but what about the
other two terms? Recall that, in this case,

EAx =
qeγ/2
4πε0

X/γ
[X2 + y2 + z2]3/2 , (5.67)

EAy =
qeγ/2
4πε0

y
[X2 + y2 + z2]3/2 , (5.68)

EAz =
qeγ/2
4πε0

z
[X2 + y2 + z2]3/2 , (5.69)

and likewise

EBx =
qeγ/2
4πε0

X/γ
[X2 + y2 +(z−d)2]3/2 , (5.70)

EBy =
qeγ/2
4πε0

y
[X2 + y2 +(z−d)2]3/2 , (5.71)

EBz =
qeγ/2
4πε0

z−d
[X2 + y2 +(z−d)2]3/2 , (5.72)

where we define X := γ(x− vt).
The x component of the integral of −(EA·v)EB− (EB·v)EA can now be calcula-

ted. We find

−2v
(

qeγ/2
4πε0

)2 ∫ dXdydz
γ

X2/γ2

[X2 + y2 + z2]3/2[X2 + y2 +(z−d)2]3/2 .

The y component is

−2v
(

qeγ/2
4πε0

)2 ∫ dXdydz
γ

Xy/γ
[X2 + y2 + z2]3/2[X2 + y2 +(z−d)2]3/2 .

Now when this is integrated over either X or y, we get zero because it constitutes an
odd function in both variables. Likewise for the z component,

−2v
(

qeγ/2
4πε0

)2 ∫ dXdydz
γ

X(z−d)/γ +Xz/γ
[X2 + y2 + z2]3/2[X2 + y2 +(z−d)2]3/2 ,

the integral over X will be zero.
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We have reached a very important conclusion here. The field momentum is still
along the axis of motion of the charge system. The last term we require is the integral
of 2(EA·EB)v, given by

2v
(

qeγ/2
4πε0

)2 ∫ dXdydz
γ

X2/γ2 + y2 + z(z−d)
[X2 + y2 + z2]3/2[X2 + y2 +(z−d)2]3/2 .

Finally the interference contribution to the field momentum is

2v
ε0

c2

(
qeγ/2
4πε0

)2 ∫ dXdydz
γ

y2 + z(z−d)
[X2 + y2 + z2]3/2[X2 + y2 +(z−d)2]3/2 . (5.73)

Grouping the constants, we have

pint = vγ
q2

e

32π2ε0c2

∫
dXdydz

y2 + z(z−d)
[X2 + y2 + z2]3/2[X2 + y2 +(z−d)2]3/2 . (5.74)

We even have the Lorentz factor.
Our immediate concern is whether or not the integral converges without the cu-

toff at A and B. If so, we can integrate over the otherwise excluded spherical (el-
lipsoidal) regions at these points, neglecting the small contribution they make to the
integral. The best approach is still to move to spherical coordinates

X = Rsinθ cosφ , y = Rsinθ sinφ , z = Rcosθ .

Then

X2 + y2 + z2 = R2 , X2 + y2 +(z−d)2 = R2−2dRcosθ +d2 ,

and

y2 + z(z−d) = R2 sin2 θ sin2 φ +Rcosθ [Rcosθ −d] .

Using the standard result

dX dydz = R2 sinθdRdθ dφ ,

we now have

pint = vγ
q2

e

32π2ε0c2

∫
dRdθdφ

Rsin3 θ sin2 φ + sinθ cosθ [Rcosθ −d]
[R2−2dRcosθ +d2]3/2 . (5.75)

We are now in a position to assess the convergence of the integral at the two sensitive
points where the integrand is potentially singular (i.e., at A and B).

From the symmetry between the two potential singularities, we need only consi-
der one of them, viz., A, since it is mathematically the simplest in these coordinates.
Now what happens when R goes to zero? We find that there is no longer any singu-
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larity in these coordinates, because the volume measure has absorbed it. Needless to
say, however, it is best to carry out the R integration before the θ integration. Before
either, we shall carry out the φ integration. It is obvious since sin2 φ + cos2 φ = 1
and cosine is just sine translated by π/2 that the integral of sin2 φ over a whole cycle
must be half of 2π . We now have

pint = vγ
q2

e

32πε0c2

∫
dRdθ

Rsin3 θ +2sinθ cosθ [Rcosθ −d]
[R2−2dRcosθ +d2]3/2 . (5.76)

Replacing cos2 θ by 1− sin2 θ in the numerator of the integrand, we can write the
integral I as a sum I = I1 + I2, where

I1 =−
∫

dRdθ
Rsin3 θ

[R2−2dRcosθ +d2]3/2 (5.77)

and

I2 =
∫

dRdθ
2sinθ [R−d cosθ ]

[R2−2dRcosθ +d2]3/2 . (5.78)

We have already met I1 in (5.32), where we found

I1 =−2
d

. (5.79)

The second integral can be immediately integrated with respect to R to give

I2 =
∫ π

θ=0
dθ sinθ

[ −2
[R2−2dRcosθ +d2]1/2

]∞

0
=

2
d

∫ π

0
sinθ dθ =

4
d

. (5.80)

The final result is

pint =
q2

e

16πε0c2d
γ(v)v . (5.81)

Replacing q2
e/4πε0 by e2, this gives

pint =
e2

4dc2 γ(v)v . (5.82)

We can conclude that the momentum-derived electromagnetic mass does indeed
depend on the orientation of the spatial charge structure with respect to the axis of
motion:

mMDM
EM (level d) =

e2

4dc2 γ(v) (transverse motion) (5.83)

The value obtained for a transverse motion is only half the value (5.56) for the
longitudinal motion studied previously.
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5.4 Neutral Particle

We can consider a radically different situation with the same structure. Let us sup-
pose the charge concentrations at A and B have opposite signs so that the whole
system is neutral. This is thus an electric dipole. We can calculate the momentum in
the fields when the system is moving along at constant velocity in our frame. It is
very easy to adapt the above arguments and reach a conclusion. It should be noted
that this kind of study was not possible with an extended charge distribution in the
form of a spherical shell, where all the charge had to be like charge.

To begin with, if B now has positive charge, its electric field is reversed compa-
red with previous calculations, i.e., EB →−EB. But then its magnetic field is also
reversed, being calculated from

BB =
1
c2 v×EB .

This means that gB = ε0EB×BB is unchanged. Hence the spatial structure of dimen-
sion a is going to contribute precisely as before, regardless of sign. But look at the
cross terms ε0EB×BA and ε0EA×BB. These both merely change sign. This time the
d-level structure is going to reduce electromagnetic mass by exactly the amounts we
had to add previously, in our various calculations. In other words, the interference
contribution to electromagnetic mass now becomes a reduction of order 1/d. Note
that the structure on the smaller scale introduces terms of order 1/a and these clearly
dominate.

What is the significance for a quark model of mesons, for example? The pion π+

is supposed to be ud, where u has charge +2/3 and d has charge +1/3. Note that
the binding forces (Poincaré stresses) are now provided by the strong force between
the quarks. In our model, we would expect a certain electromagnetic mass from
whatever tiny spatial structure the individual quarks might have, and a much smal-
ler addition to this value due to the presence of two charge centers with like charge
values. Contrast with the neutral pion π0 which is supposed to be a superposition
of states like uu, dd and so on. In this case, the contribution from the larger spatial
structure is a reduction. The neutral π meson has mass 135.0 MeV, whilst the char-
ged mesons have the same, higher mass of 139.6 MeV, so this does seem to confirm
the idea that the mass difference at least arises from the presence of electromagnetic
effects (see also the discussion in Sect. 13.3.3). Note also that one would expect the
strong force to contribute to bootstrap effects. Has this ever been seriously investi-
gated? More about that in Chap. 13.

It is interesting to note a slight difference between the toy model presented here
and the discussion by Feynman in [2, Chap. 28]. In the latter, it is merely noted
that the charged mesons are charged whilst the neutral meson is not. (What else
could one do with a spherical charge shell?) Then the former can be attributed to
an electromagnetic contribution to their mass, whilst the latter cannot. In the toy
model, although inexcusably simplistic, all the particles are considered to be made
up of charged subparticles.
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We should be able to estimate the size d of the quark–antiquark bound systems
from the toy model. It is easy to adjust our model to the case where the charge
concentrations have different magnitudes, in this case 1/3 and 2/3. In the formulas
(5.44) and (5.45) for the magnitudes of EA and EB to be fed into (5.43), we simply
replace q/2 by q1 = 1/3 in one and q2 = 2/3 in the other. The result is that we have
to replace e2 in (5.55) by 8e2/9. These differences are actually rather cosmetic given
the crude spatial structure we have attributed to the quark–antiquark relationship!
The neutral π meson is a superposition of dd and uu so we presumably need to take
some kind of statistical average of the corresponding charge factors. Once again,
this is probably not justified in the circumstances of such a crude model.

If we nevertheless include all the factors and merely average over the uu and dd
combinations, we predict a mass difference of e2/d. This also assumes that u and
d have the same mass, which is not realistic. If we equate e2/d in suitable units
with 4.6 MeV, the mass (times c2) difference between the neutral and charged π
mesons, we find that d ∼ 10−14 cm. This is apparently what would be expected
from experimental cross-section determinations.

Note that Feynman’s less elaborate considerations lead to the same estimate of
pion dimensions. He merely argues that the charged pions are more massive than the
neutral one by 4.6 MeV, so that according to his spherical shell model, they consist
of uniform distributions of charge over a spherical shell of radius 10−14 cm. This
says nothing about the size of the neutral pion! In the present version, the pions are
made of quark–antiquark pairs and it is assumed that all have the same ‘length’ d.
It is then predicted that d must be 10−14 cm in order to explain the mass difference
as having electromagnetic origin.

Another neutral particle with charged counterpart is the neutron, now conside-
red to be udd (see also the discussion in Sect. 13.3.3). The charged counterpart is
uud, the proton. The neutron can be thought to look something like a proton with a
negative pion cloud around it, a kind of sum of uud and du. Neutron decay occurs
when the pion turns into an electron and electron antineutrino via W− production. It
is not entirely surprising that the neutron is heavier, since any spatial structure here
is bound to be more complicated than the one we have assumed. We may wonder
how far these spatial structure models might be taken. Methods would have to be
developed to handle the integrals that arise in calculating the electromagnetic field
momentum.

5.5 Spread of Field Momentum after an Acceleration

One might make the criticism that we consider an ideal case when we treat an elec-
tron that has always had some constant velocity, wherein we may integrate a rather
simple field quantity over the whole of space. But the idea that the electron must in
reality have had some other velocity at some finite time in the past does not indicate
that the inertial mass must somehow build up during or after a velocity change. In
actual fact, any build-up is only due to the fact that the self-force within the electron



5.5 Spread of Field Momentum after an Acceleration 91

has to come into effect, which could only take something like a time de/c, where de
is the electron diameter.

It can be shown explicitly that field momentum gradually fills space after a short
and sharp acceleration [8, Chap. 4]. Much later, i.e., after a long coordinate time, the
field momentum will have spread to fill a very large sphere. The charge itself will
then have been moving at its new velocity for that same coordinate time. If we now
calculate the total field momentum in the relevant sphere at any given coordinate
time, we will always obtain the same answer, and it will be the result that we have
found for an electron that has always had this velocity when we integrate over the
whole of space.

The idea is just that during the acceleration, we must impart some momentum to
the system just to ensure that the fields can obtain their rightful dose! If there are
other contributions to the electron inertial mass, i.e., other reasons for it to oppose
acceleration, then more work will be required from the force imparting the accele-
ration. But what we can understand from this is that a force is required right from
the start of the acceleration, to overcome the self-force that the electron imposes on
itself to oppose the change of motion. There may be a slight delay of the order of
the time it takes a light signal to cross the electron, but there is no delay of any kind
due to the fact that the field momentum has to spread out across the whole of space,
which will of course take an infinite time.



Chapter 6
Self-Force for Transverse Linear Acceleration

6.1 Setting the Scene

We consider the dumbbell charge system under a linear acceleration perpendicular
to its axis as shown in Fig. 6.1. So we have two like charges qe/2, treated as points
and separated by a constant distance d. Let us formulate this. We shall take the
dumbbell axis to lie along the z direction, and the motion of each charge to be solely
in the x direction. Then the position vectors of A and B will have the form

rA(t) =




x(t)
0
0


 , rB(t) =




x(t)
0
d


 , (6.1)

where x(t) describes the motion of each of A and B through its time derivatives

v(t) := ẋ(t) , a(t) := ẍ(t) , (6.2)

and so on.
Now the idea is to use the formulas for the electromagnetic fields due to A to

calculate the electric and magnetic forces of A on B, then to use the formulas for the
electromagnetic fields due to B to calculate the electric and magnetic forces of B on
A. We then simply add the two forces to see if there is a net electromagnetic force
of the system on itself as it were. Naturally, A and B repel one another electrically.
Indeed, we shall find something of the electromagnetic forces they exert on one
another, and it is clear that we are considering a very ideal situation when we assume
that they are able to remain at a constant separation d in the z direction. We are
not going to worry about the binding force required to maintain this constraint.
Ultimately, it too may be considered to come from some fundamental force of which
A and B are the sources, and the claim made implicitly throughout this book is that
this will lead to other self-forces that must ultimately be taken into consideration.

But for the moment, we are concerned only with the EM self-force. Now the
formula (2.61) given on p. 21 in Chap. 2 for the electric field due to a point charge
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d
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z

x(t)
•

•

1

Fig. 6.1 Dumbbell charge system under linear acceleration perpendicular to its axis

like A or B, with charge qe/2 and arbitrary worldline given by functions xµ(τ) of
the proper time τ in Minkowski spacetime, is

E =
qe

8πε0

(
r01− r01v

c

)(
1− v2

c2

)
+

r01

c2 ×
[(

r01− r01v
c

)
×dv

dt

]

(r01− r01·v/c)3 , (6.3)

where (t0,x0,y0,z0) is the field point. Then

r01 = x0−x(τ+) =




x0− x1(τ+)
y0− x2(τ+)
z0− x3(τ+)


 , (6.4)

where τ+ is the retarded time. In words, r01 is the vector from the relevant retarded
point to the field point. v is the coordinate velocity of the source at the retarded time,
and dv/dt is the coordinate acceleration at the retarded time.

Consider first the fields due to A. In the present situation, we are only concerned
with the fields at B, so it is worth introducing a special notation. We replace r01 by

rAB
+ := rB(t)− rA(t+) =




x(t)− x(tA
+)

0
d


 , (6.5)

where tA
+ is the coordinate retarded time, rather than the proper retarded time, in

whatever inertial frame we have selected to view things from. So this is the vector
from A at the appropriate retarded time tA

+ to B at the time t we have chosen to
consider. Let rAB

+ be the length of this vector, viz.,
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rAB
+ =

{[
x(t)− x(tA

+)
]2 +d2

}1/2
. (6.6)

Then the condition determining tA
+ is

c(t− tA
+) = rAB

+ , (6.7)

which just says that the light travel time from A at the retarded time tA
+ to B at the

time t is just right for a signal from A at time tA
+ to arrive at B at time t. Explicitly

then, the condition defining tA
+ is

c(t− tA
+) =

{[
x(t)− x(tA

+)
]2 +d2

}1/2
. (6.8)

The reader should be warned that the innocuous looking relation (6.7) lies at the
heart of all self-force calculations, and is the source of all the difficulties. It is easy
enough to write down, but it is not at all designed to facilitate the task of expanding
in powers of d. But nevertheless, what we shall do is consider tA

+ = tA
+(t,d) as a

function of t and d and expand it as a power series in d, to whatever order is required.
However, before doing that, it is worth noting the following, completely erro-

neous intuitive analysis of how a self-force might come about. In the figure, the
system is shown moving in the positive x direction. Now, the electric field due to B
affecting A at a certain time originates from a point slightly to the left of the current
position of B, in the sense that B was slightly to the left of its current position at
the relevant retarded time. Likewise for the electric field due to A affecting B. One
might think that, when the charges have the same sign, the mutual repulsion of A
and B would have a rightward component that would thus tend to assist rather than
hinder the acceleration.

This argument is totally invalid. The situation is much more delicate than this.
Note, for example, that when the system is moving inertially, with constant velo-
city, the electric field due to B is radial from its current position! This is something
discussed in detail in Chap. 2. We have to be talking about an effect due to the ac-
celeration, not just the velocity, when we produce any explanation. Let us therefore
carry out a more accurate calculation, just to check that the self-force is to the left
when a system of like charges accelerates to the right.

6.2 Electric Self-Force

Before making expansions in powers of d, we shall obtain the exact expression for
the electrical self-force, according to the formula (6.3). First, however, we can make
a notational simplification due to the symmetry of the situation. We note that the
condition for the retarded time tB

+ when we consider the fields at A due to B is
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c(t− tB
+) =

{[
x(t)− x(tB

+)
]2 +d2

}1/2
, (6.9)

precisely the same as the condition (6.8) for the retarded time tA
+ . Of course, by

symmetry, we have

tB
+(t,d) = tA

+(t,d) =: t+ , (6.10)

dropping reference to A or B in the new symbol.
To express the electric field at B due to A as given by (6.3), one of the terms we

require is

rAB
+ − rAB

+ vA
+/c =




x(t)− x(t+)− (t− t+)v(t+)
0
d


 , (6.11)

where vA
+ is the velocity of A at the retarded time t+, viz.,

vA
+ =




v(t+)
0
0


 . (6.12)

Given the type of notation arising here, it will be useful to shorten things still further
by simply writing x+ := x(t+) and x := x(t) (an abuse of notation), together with
v+ := v(t+) and a+ := a(t+). Then the last two relations become

rAB
+ − rAB

+ vA
+/c =




x− x+− (t− t+)v+

0
d


 , vA

+ =




v+

0
0


 . (6.13)

We also have

dvA

dt

∣∣∣∣
t=t+

=




a+

0
0


 . (6.14)

Hence,

(
rAB
+ − rAB

+ vA
+/c

)× dvA

dt

∣∣∣∣
t=t+

= rAB
+ × dvA

dt

∣∣∣∣
t=t+

=




0
0
d


×




a+

0
0


 =




0
da+

0


 ,
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using the fact that vA and aA are always parallel. Finally, the double vector product
term in (6.3) becomes

rAB
+

c2 ×
[(

rAB
+ − rAB

+ vA
+

c

)
× dvA

dt

∣∣∣∣
t=t+

]
=

da+

c2




x− x+

0
d


×




0
1
0




=
da+

c2




−d
0

x− x+


 .

For the denominator of (6.3), we require

rAB
+ ·vA

+ =




x− x+

0
d


 ·




v+

0
0


 = v+(x− x+) ,

whence

rAB
+ − rAB

+ ·vA
+/c = c(t− t+)− v+(x− x+)/c .

Putting the pieces together, the electric field at B due to A is

EA(B) =
qe

8πε0

1
γ2
+




x− x+− (t− t+)v+

0
d


+

da+

c2




−d
0

x− x+




[
c(t− t+)− v+(x− x+)/c

]3 , (6.15)

with the shorthand

γ := γ
(
v(t)

)
, γ+ := γ

(
v(t+)

)
,

whence

1
γ2
+

= 1− v2
+

c2 .

Note that we have been using c(t− t+) as a placeholder for rA
+, given the relation

(6.7). We now have the electric force on B due to A from

Felec(on B due to A) =
qe

2
EA(B) ,

whereupon
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Felec(on B due to A) =
e2

4

1
γ2
+




x− x+− (t− t+)v+

0
d


+

da+

c2




−d
0

x− x+




[
c(t− t+)− v+(x− x+)/c

]3 ,

(6.16)

having made the replacement e2 := q2
e/4πε0. Note that there is a component in the z

direction. In a moment we shall see that it perfectly cancels the z component of the
electrical force of B on A.

At any time t, knowing the position rA(t) of A, the vector from B at the appro-
priate retarded time to A at time t is

rBA
+ =




x− x+

0
−d


 ,

which is the same as rAB
+ but with d replaced by −d. Of course, by symmetry,

rBA
+ =

[
(x− x+)2 +d2]1/2 = rAB

+ .

Furthermore,

vB =




v+

0
0


 = vA ,

whence

rBA
+ − rBA

+ vB
+/c =




x− x+− (t− t+)v+

0
−d


 ,

the same as rAB
+ − rAB

+ vA
+/c but with d replaced by −d. Since

dvB

dt

∣∣∣∣
t=t+

=




a+

0
0


 =

dvA

dt

∣∣∣∣
t=t+

,

we then have

rBA
+

c2 ×
[(

rBA
+ − rBA

+ vB
+

c

)
× dvB

dt

∣∣∣∣
t=t+

]
=−da+

c2




d
0

x− x+


 ,
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as before, but with d replaced by −d. The denominator of (6.3) is unchanged, i.e.,

rBA
+ − rBA

+ ·vB
+/c = c(t− t+)− v+(x− x+)/c = rAB

+ − rAB
+ ·vA

+/c .

The electric field at A due to B is thus

EB(A) =
qe

8πε0

1
γ2
+




x− x+− (t− t+)v+

0
−d


+

da+

c2




−d
0

−(x− x+)




[
c(t− t+)− v+(x− x+)/c

]3 , (6.17)

and the electric force of B on A is

Felec(on A due to B) =
e2

4

1
γ2
+




x− x+− (t− t+)v+

0
−d


+

da+

c2




−d
0

−(x− x+)




[
c(t− t+)− v+(x− x+)/c

]3 .

(6.18)

We observe that the x components of Felec(on A due to B) and Felec(on B due to A)
are the same, while their z components have opposite sign and simply cancel if we
make a sum of the two forces. Note that x− x+ and a+ may or may not be positive,
so their product may have either sign. These forces along the axis of the system (in
the z direction) can thus tend to stretch or to compress the dumbbell. However, we
are assuming a (rather astonishing) binding force that just manages to keep the two
charges A and B at exactly the same distance apart whatever happens!

We are concerned about the electric self-force in the x direction, the axis of ac-
celeration, and simply take the sum of the x components to get

(Fx)elec
self =

e2

2

[
x− x+− (t− t+)v+

]
(1− v2

+/c2)−d2a+/c2

[
c(t− t+)− v+(x− x+)/c

]3 (6.19)

Note that this result is still exact. An immediate question is this: does this self-force
act to the left or to the right? We shall find that, to highest order in d, it acts to the
left if and only if a is positive. But before carrying out the power series expansion
(in powers of d), let us consider the magnetic self-force.
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6.3 Magnetic Self-Force

According to the formula (2.62) given on p. 21 of Chap. 2, the magnetic field at B
due to A is given by

BA(B) =
rAB
+ ×EA(B)

crAB
+

, (6.20)

where EA(B) is given by (6.15), and the magnetic force of A on B is then

Fmag(on B due to A) =
qe

2
vB(t)×BA(B) . (6.21)

This leads to

BA(B) =
1

crAB
+




x− x+

0
d


×




EA
1 (B)
0

EA
3 (B)


 =

1
crAB

+




0
dEA

1 (B)− (x− x+)EA
3 (B)

0


 ,

which is in the y direction, perpendicular to the plane of the page in Fig. 6.1. When
we take the vector product with vB(t), which is solely in the x direction, we get a
force in the z direction:

Fmag(on B due to A) =
qe

2
v

crAB
+

[
dEA

1 (B)− (x− x+)EA
3 (B)

]



0
0
1


 . (6.22)

To find Fmag(on A due to B), we note that EB
1 (A) = EA

1 (B) is unchanged, while
EB

3 (A) = −EA
3 (B) has changed sign. When we put d →−d to obtain the magne-

tic self-force Fmag(on A due to B) from Fmag(on B due to A), we thus get the same
quantity with the opposite sign. This had to happen by symmetry, because the ma-
gnetic force does not lie along the axis of symmetry for this scenario (the x axis).
The result is therefore

Fmag
self = 0 (6.23)

Note that the magnetic forces tend to either stretch or compress our dumbbell along
its axis. However, once again, the miraculous binding force sees to it that the dumb-
bell remains unchanged.

6.4 Constant Velocity Case

So we have shown that the net electromagnetic self-force of the system on itself is
purely electric, the magnetic effects summing to zero, and that it lies along the line
of acceleration (the x axis). Let us now take the total self-force as given by (6.19),
viz.,
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Fself
x =

e2

2

[
x− x+− (t− t+)v+

]
(1− v2

+/c2)−d2a+/c2

[
c(t− t+)− v+(x− x+)/c

]3 (6.24)

and expand as a power series in d to O(d0). Before beginning though, this is a good
point to note what happens when the system is moving along at constant velocity.
In this case, v+ = v, a+ = 0 = a, and v+(t− t+) = x− x+, so

Fself = 0 (constant velocity case) (6.25)

Note that this is an exact result, not depending on any power series expansion.
It would have been interesting if the self-force had been non-zero for a constant

velocity of the system. In such a world, Newton’s first law would not hold, because
one would have to deal with this kind of effect, in bound particle systems at least, if
not also in all elementary particles, in order to get the relevant object just to move
along at constant velocity. One would have to oppose this reluctance to move, which
we are used to finding only when we wish something to move with an acceleration,
not when the motion is merely a constant velocity.

This particular self-force thus makes a clear distinction between constant velocity
and acceleration. In a way, it is a step toward understanding Newton’s second law.
Since self-forces do indeed contribute to the inertia of bound particle systems, here
we have a (pre-quantum) explanation for why accelerations should be different from
constant velocities in this respect.

6.5 Power Series Expansion of Self-Force

The time has come to examine the self-force in more detail. The first task is to
analyse the retarded time t+ = t+(t,d), defined by (6.8) on p. 95, viz.,

c(t− t+) =
{[

x(t)− x(t+)
]2 +d2

}1/2
. (6.26)

As mentioned there, this simple relation lies at the heart of the self-force effect, and
in the more complex scenarios considered later, it is the source of all the difficulty
in the calculation.

However, in the present scenario, things are simple enough. It will be worth ta-
king the expansion of t+ to third order in d so that we may expand Fself to O(d0).
We shall then find that there is an O(d−1) term in Fself, which obviously diverges
if we let the system dimension tend to zero, and can be considered to contribute to
the inertial mass of the system, and an O(d0) term, i.e., independent of the system
dimension, which in fact explains why our system is able to radiate electromagnetic
energy when accelerated.
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6.5.1 Expansions for Retarded Time and Retarded Point

We seek an expansion of the form

t+(t,d) = t+(t,0)+
∂ t+
∂d

∣∣∣∣
d=0

d +
1
2

∂ 2t+
∂d2

∣∣∣∣
d=0

d2 +
1
6

∂ 3t+
∂d3

∣∣∣∣
d=0

d3 +O(d4) .

(6.27)

We obviously have t+(t,0) = t, i.e., the retarded time is just t itself when d = 0,
because A and B lie at the same point in space. For notational purposes in what
follows, we shall define

U :=
∂ t+
∂d

∣∣∣∣
d=0

, V :=
∂ 2t+
∂d2

∣∣∣∣
d=0

, W :=
∂ 3t+
∂d3

∣∣∣∣
d=0

,

so that the above expansion becomes

t+(t,d) = t +Ud +
1
2

V d2 +
1
6

Wd3 +O(d4) . (6.28)

Taking the partial derivative of (6.26) with respect to d, we obtain

−c
∂ t+
∂d

=
−(x− x+)v+

∂ t+
∂d

+d
[
(x− x+)2 +d2

]1/2 ,

whence

∂ t+
∂d

=
d

(x− x+)v+− c2(t− t+)
. (6.29)

Since

x = x+ +
dx
dt

∣∣∣∣
t=t+

(t− t+)+O(t− t+)2 ,

we have

x− x+ = v+(t− t+)+O(d2) =−v+Ud +O(d2) .

Hence,

U = lim
d→0

d
−v+Udv+ + c2Ud +O(d2)

=
1

(c2− v2)U
=

γ2

c2U
,

and finally,
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U =
∂ t+
∂d

∣∣∣∣
d=0

=−γ
c

(6.30)

Note that U is expected to be negative, because t+ should get further behind t as d
increases.

Differentiating (6.29) with respect to d, we now obtain

∂ 2t+
∂d2 =

(x− x+)v+− c2(t− t+)+
[
v2
+− (x− x+)a+− c2]d

∂ t+
∂d[

(x− x+)v+− c2(t− t+)
]2 . (6.31)

We have to take the limit of both sides as d → 0 in order to find V . On the right-hand
side, both numerator and denominator go as d2, so we need to expand each to that
order. (The method is beginning to creak, and we shall use a more efficient one to
obtain W !)

The denominator is easy, since we have

x− x+ =
vγ
c

d +O(d2) , v+ = v+O(d) , t− t+ =
γ
c

d +O(d2) ,

whence

[
(x− x+)v+− c2(t− t+)

]2 =
(

v2γ
c
− c2 γ

c

)2

d2 +O(d3)

= c2d2γ2
(

1− v2

c2

)2

+O(d3)

=
c2

γ2 d2 +O(d3) .

The numerator is more delicate. We require x− x+ to O(d2), v+ to O(d), t− t+ to
O(d2), v2

+ to O(d), and ∂ t+/∂d to O(d). Now

t+ = t− γ
c

d +
1
2

V d2 +O(d3) ,

so

t− t+ =
γ
c

d− 1
2

V d2 +O(d3) ,
∂ t+
∂d

=−γ
c

+V d +O(d2) .

Further
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x(t+) = x(t + t+− t)

= x(t)+ v(t)(t+− t)+
1
2

a(t)(t+− t)2 +O(t+− t)3

= x+ v
(
−γ

c
d +

1
2

V d2
)

+
1
2

a
γ2

c2 d2 +O(d3) .

Hence,

x− x+ =
γv
c

d−
(

1
2

vV +
aγ2

2c2

)
d2 +O(d2) .

Finally,

v(t+) = v(t + t+− t)

= v(t)+a(t)(t+− t)+O(t+− t)2

= v+a
(
−γ

c
d
)

+O(d2) ,

so that

v+ = v− aγ
c

d +O(d2) , v2
+ = v2− 2avγ

c
d +O(d2) .

The numerator in (6.31) is then given by

(x− x+)v+− c2(t− t+)+
[
v2
+− (x− x+)a+− c2]d

∂ t+
∂d

=
[

3aγ2v
2c2 +

1
2
(v2− c2)V

]
d2 +O(d3) .

Returning to (6.31) and taking the limit of both sides as d → 0, we obtain

V =
∂ 2t+
∂d2

∣∣∣∣
d=0

= lim
d→0

(x− x+)v+− c2(t− t+)+
[
v2
+− (x− x+)a+− c2]d

∂ t+
∂d[

(x− x+)v+− c2(t− t+)
]2

= lim
d→0

[
3aγ2v
2c2 +

1
2
(v2− c2)V

]
d2 +O(d3)

c2

γ2 d2 +O(d3)

=
γ2

c2

[
3aγ2v
2c2 +

1
2
(v2− c2)V

]

=
3aγ4v
2c4 − 1

2
V .
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At last we have the result

V =
∂ 2t+
∂d2

∣∣∣∣
d=0

=
avγ4

c4 (6.32)

So far we have shown that

t+ = t− γ
c

d +
avγ4

2c4 d2 +
1
6

Wd3 +O(d4) , (6.33)

or

t− t+ =
γ
c

d− avγ4

2c4 d2− 1
6

Wd3 +O(d4) (6.34)

This is enough to obtain Fself to O(d−1), the lowest order term in the self-force,
contributing to the inertial mass of the system. In the three other scenarios, we shall
only go this far, but in the present case, things are simple enough to justify going for
the radiation reaction term at O(d0). To do so, we must find W .

Taking another derivative of (6.26) with respect to d and using the above method
is much too long-winded, hence open to error, so we use another approach, viz.,
expand both (x− x+)2 and (t − t+)2 to suitable orders, substitute the expansions
into

c2(t− t+)2 = (x− x+)2 +d2 , (6.35)

then equate coefficients of powers of d on either side. We could have used this
simple idea to obtain U and V above, and will opt for this method in the other three
scenarios.

Squaring (6.34) and multiplying by c2, we obtain

c2(t− t+)2 = γ2d2− avγ5

c3 d3 +
(

a2v2γ8

4c6 −W γc
3

)
d4 +O(d5) , (6.36)

which is indeed accurate up to O(d4). Next we need x+ to O(d3), using

x+ = x+
∂x+

∂d

∣∣∣∣
d=0

d +
1
2

∂ 2x+

∂d2

∣∣∣∣
d=0

d2 +
1
6

∂ 3x+

∂d3

∣∣∣∣
d=0

d3 +O(d4) ,

where

∂x+

∂d
= v+

∂ t+
∂d

,
∂ 2x+

∂d2 = a+

(
∂ t+
∂d

)2

+ v+
∂ 2t+
∂d2 ,

and
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∂ 3x+

∂d3 = ȧ+

(
∂ t+
∂d

)3

+3a+
∂ t+
∂d

∂ 2t+
∂d2 + v+

∂ 3t+
∂d3 .

It follows that

∂x+

∂d

∣∣∣∣
d=0

= v
∂ t+
∂d

∣∣∣∣
d=0

=−γv
c

,

using (6.30) for ∂ t+/∂d
∣∣
d=0, and

∂ 2x+

∂d2

∣∣∣∣
d=0

=
aγ2

c2 +
av2γ4

c4 =
aγ4

c2 ,

using (6.32) for ∂ 2t+/∂d2
∣∣
d=0. Finally,

∂ 3x+

∂d3

∣∣∣∣
d=0

= ȧ
(
−γ

c

)3
+3a

(
−γ

c

) avγ4

c4 + vW

= vW − ȧγ3

c3 − 3a2γ5v
c5 .

We thus obtain

x− x+ =
γv
c

d− aγ4

2c2 d2 +
1
6

(
ȧγ3

c3 +
3a2γ5v

c5 − vW
)

d3 +O(d4) (6.37)

Squaring this, we now have

(x− x+)2 =
γ2v2

c2 d2− avγ5

c3 d3 +
(

ȧvγ4

3c4 +
a2v2γ6

c6 − γv2W
3c

+
a2γ8

4c4

)
d4 +O(d5) ,

which is indeed correct to O(d4), and hence

(x− x+)2 +d2 = γ2d2− avγ5

c3 d3 +
(

ȧvγ4

3c4 +
a2v2γ6

c6 − γv2W
3c

+
a2γ8

4c4

)
d4 +O(d5) .

(6.38)

Comparing (6.36) term by term with (6.38), as dictated by the defining condition
(6.35) for t+, we find that the coefficients of d2 and d3 do agree, something we
carefully arranged when we calculated U in (6.30) and V in (6.32). Requiring the
coefficients of the O(d4) terms to agree implies the relation

a2v2γ8

4c6 −Wγc
3

=
ȧvγ4

3c4 +
a2v2γ6

c6 − γv2W
3c

+
a2γ8

4c4 .

Solving for W , we conclude this analysis with the result
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W =
∂ 3t+
∂d3

∣∣∣∣
d=0

=− γ5

4c5

(
3a2γ2 +

12a2v2γ2

c2 +4ȧv
)

(6.39)

We substitute this into (6.34) to obtain

t− t+ =
γ
c

d− avγ4

2c4 d2 +
γ5

24c5

(
3a2γ2 +

12a2v2γ2

c2 +4ȧv
)

d3 +O(d4) (6.40)

and into (6.37) to obtain, after a short calculation,

x− x+ =
γv
c

d− aγ4

2c2 d2 +
γ5

6c3

(
ȧ+

15a2vγ2

4c2

)
d3 +O(d4) (6.41)

6.5.2 Expansion for Total Self-Force

We return now to the exact formula (6.19) for the total self-force on p. 99, viz.,

Fself
x =

e2

2

[
x− x+− (t− t+)v+

]
(1− v2

+/c2)−d2a+/c2

[
c(t− t+)− v+(x− x+)/c

]3 (6.42)

Since the denominator goes as d3, we must expand the numerator to O(d3) in order
to get Fself

x to O(d0). It turns out that the O(d) terms one might expect in the nu-
merator actually cancel, so that we shall obtain terms in d2 and d3. When we then
come to divide by the denominator, we shall require terms in d3 and d4.

Starting with the denominator, we note that we require c(t−t+)−v+(x−x+)/c to
O(d2) to fulfill the above program. This means that we require v+ to O(d). However,
later we shall require v+ to O(d2). Now

v+ = v+
∂v+

∂d

∣∣∣∣
d=0

d ++
1
2

∂ 2v+

∂d2

∣∣∣∣
d=0

d2 +O(d3) ,

and

∂v+

∂d
= a+

∂ t+
∂d

=⇒ ∂v+

∂d

∣∣∣∣
d=0

=−aγ
c

,

by (6.30) on p. 103, while

∂ 2v+

∂d2 = ȧ+

(
∂ t+
∂d

)2

+a+
∂ 2t+
∂d2 =⇒ ∂ 2v+

∂d2

∣∣∣∣
d=0

=
ȧγ2

c2 +
a2vγ4

c4 ,

by (6.32) on p. 105. Hence,



108 6 Self-Force for Transverse Linear Acceleration

v+ = v− γa
c

d +
γ2

2c2

(
ȧ+

a2vγ2

c2

)
d2 +O(d3) (6.43)

Now (6.40) and (6.41) imply that

c(t− t+)− v+(x− x+)/c =
d
γ

+
avγ2

c3 d2 +O(d3) ,

whence

[
c(t− t+)− v+(x− x+)/c

]−3
=

γ3

d3
[

1+
3avγ3

c3 d +O(d2)
] . (6.44)

Now consider the numerator of (6.42). To begin with,

a+ = a+ ȧ
∂ t+
∂d

∣∣∣∣
d=0

d +O(d2) = a− γ ȧ
c

d +O(d2) ,

whence

d2a+

c2 =
a
c2 d2− γ ȧ

c3 d3 +O(d4) . (6.45)

Putting together (6.40) for t− t+, (6.41) for x− x+, and (6.43) for v+, keeping the
terms to O(d2) in the latter for this calculation, we now have

x− x+− v+(t− t+) =
γ2a
2c2 d2−

(
ȧγ3

3c3 +
a2vγ5

2c5

)
d3 +O(d4) . (6.46)

This has to be multiplied by 1− v2
+/c2, keeping terms to O(d). Equation (6.43)

implies

1− v2
+

c2 = γ−2 +
2aγv

c3 d +O(d2) . (6.47)

This implies that

[
x− x+− v+(t− t+)

](
1− v2

+

c2

)
=

a
2c2 d2 +

(
a2γ3v
2c5 − γ ȧ

3c3

)
d3 +O(d4) .

The numerator of (6.42) is thus

[
x− x+− v+(t− t+)

](
1− v2

+

c2

)
− d2a+

c2 =− a
2c2 d2+

(
a2γ3v
2c5 +

2γ ȧ
3c3

)
d3 +O(d4) .

We now have the expansion of the total electromagnetic self-force in the x direction,
using the last relation and (6.44) to calculate
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Fself
x =

e2

2
γ3

d3

[
1− 3avγ3

c3 d +O(d2)
][
− a

2c2 d2+
(

a2γ3v
2c5 +

2γ ȧ
3c3

)
d3 +O(d4)

]
,

whence

Fself
x =− e2

4c2d
aγ3 +

e2γ3ȧ
3c3 +

e2va2γ6

c5 +O(d) (6.48)

6.6 Interpreting the Expansion of the Self-Force

The first observation is that there is no term going as d−2. However, there is a term
going as d−1. If we let the system size go to zero, the self-force diverges. This is a
classical version of the problem that requires mass renormalisation in quantum field
theories of elementary particles. But there is also a term that is independent of the
system size and remains unchanged when we let the system size go to zero. This is
the radiation reaction term. We shall consider each of these terms separately in the
next two sections.

But first the reader should also note what would happen if the two charges in the
dumbbell system were opposite in sign. It is very easy to check that every term in
Fself

x simply changes sign (replacing e2 by−e2). In such a system, the EM self-force
will actually help the acceleration along, i.e., the EM contribution to the inertial
mass will be negative. This fits perfectly with the idea that a negative binding energy
in a bound state particle should decrease its inertial mass.

6.6.1 Divergent Term in the Self-Force and Mass Renormalisation

The divergent term in (6.48) (as d → 0) is negative when a is positive, and po-
sitive when a is negative. This is a very significant fact. It means that, when the
acceleration is instantaneously to the right (positive x axis), the self-force acts ins-
tantaneously to the left (negative x axis), and vice versa. It is in this sense that the
self-force contributes to the inertia of the system. Whatever inertial masses one may
attribute to the two point charges separately, with total m0 say, there will be another
contribution from this self-force effect.

Let us see how one might renormalise the inertial mass of the system, i.e., absorb
the self-force contribution into a total inertial mass. Recall the Lorentz force law, or
at least, the three spatial components of it:

d
dt

(m0γv) = e(E+v×B)+EM self-force , (6.49)

where v is the coordinate 3-velocity of the system and E and B are some external
EM fields. The self-force
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EM self-force =− e2

4c2d
γ(v)3ẍ (6.50)

in the x direction, where ẍ = a, has been added to the other terms on the right-hand
side of (6.49), which are due to the external electromagnetic fields. But note that

d
dt

[
γ(v)v

]
= γ(v)3ẍ .

This means that the divergent O(d−1) contribution to the self-force has exactly the
form required for it to contribute to inertial mass, even under relativistic conditions,
where that mass varies with speed.

This is quite a remarkable situation. To begin with it allows us to replace the bare
mass m0 by the renormalised mass

mren := m0 +
e2

4c2d
, (6.51)

which would be infinite if the system had no spatial extension, and then rewrite the
Lorentz force law in the form

d
dt

(mrenγv) = e(E+v×B) , (6.52)

ignoring the possible presence of any self-forces, as one usually does for the elec-
tron, for example.

But better than that, it shows that the self-force contribution to the inertial mass
expressed in the renormalisation equation (6.51) will actually vary the way inertial
mass is supposed to vary with speed in the special theory of relativity. This was dis-
covered before the advent of the fully fledged relativity theory. With hindsight one
might say that this had to happen because Maxwell’s theory, from which this contri-
bution was derived, is Lorentz symmetric (or relativistically invariant, or however
one would like to put that), and of course it does not matter whether one is aware
of that when deriving this result. But the reader is advised to look at the complexity
of the calculation, and indeed the arbitrariness of the structure of our toy electron,
before taking this situation as obvious.

To put it another way, one might say that we have here an explanation as to why
inertial mass should increase as predicted by relativity theory when a system moves
faster: it is because the self-forces within the system increase the way they do, at
least as far as the self-force contributions to the inertial mass are concerned.

6.6.2 Constant Term in the Self-Force and Radiation Reaction

We said after (6.52), viz.,

d
dt

(mrenγv) = e(E+v×B) , (6.53)
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that one could ignore the possible presence of any self-force terms, but this is not
quite true. For we have another term in the self-force which cannot be absorbed
into the inertial mass of the system, and this term remains the same when we allow
d → 0. If we add in this term on the right-hand side of (6.53), we obtain something
very close to the Lorentz–Dirac equation, which is discussed in great detail in [4].
The point is that this term is a radiation reaction, i.e., a force back on the system due
to the fact that it radiates EM energy.

Now a charged particle like an electron will radiate EM energy whenever it is
accelerated, so in any situation where it is accelerated, there will be a radiation
reaction force on it. This implies that its equation of motion will never be just the
Lorentz force law (6.53). Dirac was the first to obtain an adjusted equation [3],
which is thus known as the Lorentz–Dirac equation. His and subsequent derivations
treat the electron as a point particle and derive this equation from conservation of
energy and momentum in a delicate limiting process. (The process also throws up
the mass renormalisation term mentioned in the last section, this being infinite in
that case, since the electron has no spatial extent.)

The fact that accelerating charges radiate is merely a consequence of Maxwell’s
equations. These imply the famous Larmor formula (2.63) on p. 22 for the rate P at
which energy is radiated away by a charge q with acceleration a (further discussion
can be found in [1, 4]):

P =
2
3

q2

c3 a2 . (6.54)

Let us apply this to the present system. It will be an opportunity to discover some-
thing rather remarkable.

Our system comprises two point charges e/2, each with acceleration a. Now
when we wrote down (6.48), we only included the interaction self-forces between
the two charges. But there will also be a self-force of each component charge on
itself. The latter will contribute infinitely to mass renormalisation since the com-
ponent charges are mathematical points, but we shall suppose that renormalisation
has been carried out in the usual way. Concerning the next term, independent of the
particle dimensions, each point component will exert a self-force

2
3

(e/2)2

c3
...x

on itself, according to the general result (3.28) on p. 41 [see also Sect. 3.5 and
(3.30) on p. 43]. Adding twice this (once for each point component) to the term in
the interparticle self-force (6.48) that is independent of the interparticle distance, we
have a total for this particular term equal to

2
3

(e/2)2

c3
...x +

2
3

(e/2)2

c3
...x +

1
3

e2

c3
...x =

2
3

e2

c3
...x ,

which is exactly equal to the corresponding term in the general result (3.28) for a
particle with total charge e [see also (3.30) on p. 43].
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To see that this reasoning is correct, consider how all that works out when the
two component charges have opposite signs. We still get

2
3

(e/2)2

c3
...x

for the term in the self-force of each component on itself that is independent of its
dimensions (since each component is viewed as being made up of like charges, even
though it is taken to be a point particle). But as mentioned at the beginning of this
section, all the terms in the interparticle self-force (6.48) are reversed in sign, so
the total for the self-force term that is independent of the spatial dimensions of the
system is now

2
3

(e/2)2

c3
...x +

2
3

(e/2)2

c3
...x − 1

3
e2

c3
...x = 0 .

We are saying therefore that the radiation reaction is precisely zero in this case. That
agrees perfectly with the corresponding term in the general result (3.28) in the case
where the total charge of the system is zero.

Consider how this works out in terms of the Larmor radiation formula, first for
the case where the component point particles in our system have like charges. Ac-
cording to (6.54), the power radiated away by each considered as a point charge
is

2
3

( e
2

)2 1
c3 ẍ2 ,

giving a total

P(components) =
2
3

( e
2

)2 1
c3 ẍ2 +

2
3

( e
2

)2 1
c3 ẍ2 =

1
3

e2

c3 ẍ2 . (6.55)

But there is also the interaction force between the two components, i.e., the O(d0)
self-force term

Fself
rad =

e2γ3ȧ
3c3 +

e2va2γ6

c5 ,

in (6.48). First note that the curious second term will be negligible in the non-
relativistic case, so let us consider that case, setting also γ ≈ 1. Then the rate of
doing work dW/dt on our system against the main radiation term in the interaction
self-force would be

dW
dt

=−e2...x
3c3 ẋ =−1

3
e2

c3
d
dt

(ẋẍ)+
1
3

e2

c3 ẍ2 .

If the motion of the system is periodic, with x(t) ∝ cosωt, then

ẋẍ ∝ sin2ωt ,
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so the first term in dW/dt will average to zero. But the second term is always posi-
tive, and must be added to the total (6.55) from the components. What we get then
is

1
3

e2

c3 ẍ2 +
1
3

e2

c3 ẍ2 =
2
3

e2

c3 ẍ2 ,

which is precisely the Larmor radiation term predicted in (6.54) for the dumbbell
system when it has a total charge e.

When the component point charges in our dumbbell have opposite signs, we still
have (6.55), but now the sign changes in Fself

rad , so the sign changes in the relevant
term of the rate of doing work dW/dt on our system against the main radiation term
in the interaction self-force. What we get now for the total radiated power is

1
3

e2

c3 ẍ2− 1
3

e2

c3 ẍ2 = 0 ,

which is precisely the Larmor radiation term predicted in (6.54) for the dumbbell
system when it has a total charge 0.

This is another point in favour of the idea that one should consider all charged
particles to have spatial extent, and to constitute some kind of spatial distribution of
charge (although obviously not the very artificial one chosen here, which in a sense
exacerbates the problem, by comprising two point charges instead of just one). The
point here is that otherwise one has no explanation as to why the electron should
radiate energy, or what force one is working against in order to drive energy off into
the surrounding space in the form of EM radiation. As pointed out by Feynman [2],
when a radio antenna is radiating, the forces come from the influence of one part of
the antenna current on another. In the case of a single accelerating electron radiating
into otherwise empty space, there is only one place the force could come from,
namely, the action of one part of the electron on another.



Chapter 7
Self-Force for Axial Linear Acceleration

7.1 Setting the Scene

We now consider the dumbbell charge system under a linear acceleration along its
axis as shown in Fig. 7.1. So we have two like charges qe/2, labelled A and B, and
each is moving along the x axis. We shall say that A has trajectory given by xA(t) =:
x(t) in whatever inertial frame we have selected, with speed vA(t) =: v(t) = ẋ(t)
and acceleration aA(t) =: a(t) = ẍ(t), these being in the x direction. But this time
we have a problem, because we know that objects contract along the direction of
motion in the special theory of relativity (FitzGerald contraction). And if our system
is contracting as it moves along, this means that its length will not generally be d,
and the speed vB(t) of B will not just be v(t).

This is clearly a physical problem. Mathematically speaking, we could insist that
the left-hand charge A have motion xA(t) and the right-hand charge have motion
xB(t) = d + xA(t). The binding forces would have to do some clever work to make
this happen, because the electromagnetic forces go into strange contortions, as we
shall soon see. It is much more likely that our electron will FitzGerald contract,
just as the proverbial rigid rod in relativity theory will do when moved. The rigid
rod is basically the way it is because of the electromagnetic forces set up between
its constituent atoms [5]. It is more satisfying to think that the binding forces in
our electron will not cleverly try to counteract this natural kind of contraction. We
should expect them to obey some relativistic theory, that is, a theory which is Lo-
rentz symmetric. Then our electron will contract. This is therefore a hypothesis that
we shall make concerning the binding forces (Poincaré stresses).

For the moment, let us not go into too much detail about this, relegating the
discussion of rigidity to its own chapter (see Chap. 12). It is an interesting subject
in itself. Let us just note that, when Lorentz himself calculated the self-force on
a spherical charged sphere under acceleration along a straight line, his sphere was
assumed to contract in the direction of motion, becoming an ellipsoid. It did this
in a rather special way, which in fact constitutes the very definition of rigidity as it
is usually given [6]: the sphere always looked exactly spherical in its instantaneous
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A B

v

x

x(t)+dγ−1x(t)
• •

1

Fig. 7.1 Dumbbell charge system under linear acceleration along its axis. d is fixed, being the rest
frame length of the system, but γ is a function of t via the speed v(t) of A

rest frame [7]. This assumption actually makes the calculation tractable for the case
of the sphere. Suffice it to say for the moment that we do not find much about the
length of accelerating rigid rods in books about relativity theory (but see [5]).

There is an obvious physical point here concerning the time required for the se-
paration between A and B to adjust to its FitzGerald-contracted value. Physically
there is sure to be a small time lag before the separation between A and B assumes
the correct FitzGerald-contracted length. If their speeds change too quickly, the ap-
proximations we make here are likely to be inaccurate. The time lag should be so-
mething like d/c, the time required for the electromagnetic effects, and presumably
also the binding force effects, to travel across the electron.

Furthermore, charges A and B are moving at different speeds at any given time.
This means that there is some question about where we should say the electron is
located, and what speed it is going at. Rather than taking averages over the two
component charges, let us just say that the electron is at

x(t) := xA(t) , so that xB(t) = x(t)+

√
1− v(t)2

c2 d , (7.1)

where

v(t) := ẋ(t) , and hence vB(t) = v(t)− γ(v)v(t)ẍ(t)d
c2 , (7.2)

where

γ(v) =
(

1− v2

c2

)−1/2

.

This means that we are assuming the instantaneous FitzGerald contraction of the
separation by feeding in the speed of the left-hand charge. The position vectors of
A and B will thus have the form

rA(t) =




xA(t)
0
0


 , rB(t) =




xB(t)
0
0


 , (7.3)
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where x(t) = xA(t) effectively determines the motion of each of A and B through its
time derivatives

v(t) := ẋ(t) , a(t) := ẍ(t) , (7.4)

and the relations (7.1) and (7.2).
As in Chap. 6, we use the formulas for the electromagnetic fields due to A to

calculate the electric and magnetic forces of A on B, then use the formulas for the
electromagnetic fields due to B to calculate the electric and magnetic forces of B on
A. We then simply add the two forces to see if there is a net electromagnetic force
of the system on itself as it were. Naturally, A and B repel one another electrically.
As in the scenario of Chap. 6, there is a potentially misleading argument as to why
there should be a self-force on this system when it is moving. It goes as follows.
Suppose the system is moving to the right. Charge A repels charge B with a force
inversely proportional to the square of the separation. However, the force felt by B
at some given time t in our inertial frame was the one generated by A at a retarded
time tA

+ < t. Now A was slightly further to the left then than it is now. This tends to
reduce the repulsion of B. But charge B repels charge A likewise. It too was slightly
further to the left at the relevant retarded time tB

+. This tends to increase its repulsive
force on A. One would like to conclude that there will be a net force to the left.

It turns out that there is, but only if the instantaneous acceleration of the system
is to the right. The situation is much more delicate than the above argument would
suggest. When the system is moving inertially, with constant velocity, the electric
field due to B is radial from its current position! This is something discussed in
detail in Chap. 2. We have to be talking about an effect due to the acceleration, not
just the velocity, when we produce any explanation. We shall thus carry out a more
accurate calculation, to check that the self-force really is to the left when a system
of like charges accelerates to the right.

Now the formula (2.61) given on p. 21 of Chap. 2 for the electric field due to a
point charge like A or B, with charge qe/2 and arbitrary worldline given by functions
xµ(τ) of the proper time τ in Minkowski spacetime, is

E =
qe

8πε0

(
r01− r01v

c

)(
1− v2

c2

)
+

r01

c2 ×
[(

r01− r01v
c

)
×dv

dt

]

(r01− r01·v/c)3 , (7.5)

where (t0,x0,y0,z0) is the field point. Then

r01 = x0−x(τ+) =




x0− x1(τ+)
y0− x2(τ+)
z0− x3(τ+)


 , (7.6)

where τ+ is the retarded time. In words, r01 is the vector from the relevant retarded
point to the field point. v is the coordinate velocity of the source at the retarded time,
and dv/dt is the coordinate acceleration at the retarded time.
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Consider first the fields due to A. We are only concerned with the fields it pro-
duces at B, so once again we introduce a special notation. We replace r01 by the
vector from A at the retarded time tA

+ to B at the time t we have chosen to consider,
viz.,

rAB
+ := rB(t)− rA(tA

+) =




xB(t)− xA(tA
+)

0
0


 . (7.7)

Note that tA
+ is the coordinate retarded time, rather than the proper retarded time, in

whatever inertial frame we have selected to view things from. Let rAB
+ be the length

of this vector, viz.,

rAB
+ = xB(t)− xA(tA

+) . (7.8)

Then the condition determining tA
+ is

c(t− tA
+) = rAB

+ , (7.9)

which just says that the light travel time from A at the retarded time tA
+ to B at the

time t is just right for a signal from A at time tA
+ to arrive at B at time t. Explicitly

then, the condition defining tA
+ is

c(t− tA
+) = xB(t)− xA(tA

+) (7.10)

When we consider the fields due to B, we are only concerned with the fields it
produces at A, and we thus replace r01 in (7.5) by the vector from B at the retarded
time tB

+ to A at the time t we have chosen to consider, viz.,

rBA
+ := rA(t)− rB(tB

+) =




xA(t)− xB(tB
+)

0
0


 . (7.11)

Let rBA
+ be the length of this vector, viz.,

rBA
+ =

∣∣xA(t)− xB(tB
+)

∣∣ = xB(tB
+)− xA(t) . (7.12)

Then the condition determining tB
+ is

c(t− tB
+) = rBA

+ , (7.13)

which just says that the light travel time from B at the retarded time tB
+ to A at the

time t is just right for a signal from B at time tB
+ to arrive at A at time t. Explicitly

then, the condition defining tB
+ is
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c(t− tB
+) = xB(tB

+)− xA(t) (7.14)

Once again, the innocuous looking relations (7.10) and (7.14) lie at the heart of
the self-force calculation, and are the source of all the difficulties. Although they
are simple conditions, they were not designed to facilitate the task of expanding in
powers of d. However, this is precisely what we shall do, treating tA

+ = tA
+(t,d) and

tB
+ = tB

+(t,d) as functions of t and d, and expanding them as power series in d, to
whatever order is required.

Many things about the present scenario are more complicated than in the one dis-
cussed in Chap. 6. In particular, there are now two different retarded time functions
tA
+ and tB

+ to be expanded. Some things are simpler, however. In the present case,
all vectors arising in the required applications of (7.5) have only one nonzero com-
ponent, in the x direction. This means that the vector product term in the numerator
of (7.5) will be zero for both the electric field EB(A) at A due to B and the electric
field EA(B) at B due to A.

Furthermore, the magnetic field BB(A) at A due to B as given by (2.62) on p. 21
is

BB(A) =
rBA
+ ×EB(A)

crBA
+

, (7.15)

and the two vectors in the numerator are parallel (in the x direction) so their vector
product is zero. Likewise, the magnetic field BA(B) at B due to A, viz.,

BA(B) =
rAB
+ ×EA(B)

crAB
+

, (7.16)

will be zero. (We are not saying that A and B do not generate magnetic fields. They
do. It is just that neither can ever generate a magnetic field where the other happens
to be.) So in this scenario, there will be no magnetic self-force at all, not even one
that might try to stretch or compress the system, as we found in Chap. 6.

7.2 Self-Force

Before making expansions in powers of d, let us write down an exact expression for
the self-force on the system. The first thing is to express the electric field at B due
to A, viz.,

EA(B) =
qe

8πε0

(
rAB
+ − rAB

+ vA
+

c

)[
1− (vA

+)2

c2

]

(
rAB
+ − rAB

+ ·vA
+/c

)3 , (7.17)

and the electric field at A due to B, viz.,
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EB(A) =
qe

8πε0

(
rBA
+ − rBA

+ vB
+

c

)[
1− (vB

+)2

c2

]

(
rBA
+ − rBA

+ ·vB
+/c

)3 , (7.18)

in which vA
+ and vB

+ are the velocities of A at the retarded time tA
+ and B at the

retarded time tB
+, respectively.

Now by (7.7), we have

rAB
+ − rAB

+ ·vA
+

c
= rAB

+

(
1− vA

+

c

)

and

rAB
+ − rAB

+ vA
+

c
= rAB

+

(
1− vA

+

c

)



1
0
0


 .

Hence,

EA(B) =
qe

8πε0

1+
vA
+

c

(rAB
+ )2

(
1− vA

+

c

)




1
0
0


 . (7.19)

Now the electric force on B due to A is

Felec(on B due to A) =
qe

2
EA(B) =

q2
e

16πε0

1+
vA
+

c

(rAB
+ )2

(
1− vA

+

c

)




1
0
0


 . (7.20)

Likewise, by (7.11) and (7.12),

rBA
+ − rBA

+ ·vB
+

c
= rBA

+

(
1+

vB
+

c

)

and

rBA
+ − rBA

+ vB
+

c
=−rBA

+

(
1+

vB
+

c

)



1
0
0


 .

Hence,
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EB(A) =− qe

8πε0

1− vB
+

c

(rBA
+ )2

(
1+

vB
+

c

)




1
0
0


 . (7.21)

Now the electric force on A due to B is

Felec(on A due to B) =
qe

2
EB(A) =− q2

e

16πε0

1− vB
+

c

(rBA
+ )2

(
1+

vB
+

c

)




1
0
0


 . (7.22)

Finally, making the replacement e2 := q2
e/4πε0, the total electric, and hence also the

total electromagnetic force of the system on itself is

Fself := Felec(on B due to A)+Felec(on A due to B) ,

which gives the result

Fself =
e2

4




1+
vA
+

c

(rAB
+ )2

(
1− vA

+

c

) −
1− vB

+

c

(rBA
+ )2

(
1+

vB
+

c

)







1
0
0


 (7.23)

By virtue of the relations (7.9) and (7.13) defining the retarded times tA
+ and tB

+,
respectively, this can also be written in the form

Fself =
e2

4c2




1+
vA
+

c

(t− tA
+)2

(
1− vA

+

c

) −
1− vB

+

c

(t− tB
+)2

(
1+

vB
+

c

)







1
0
0


 (7.24)

7.3 Constant Velocity Case

It was mentioned above that there would be no EM self-force in the case where the
system has uniform velocity v. Note that, when A has uniform velocity, one expects
B also to have uniform velocity, and one expects the separation of the two charges
to be the FitzGerald-contracted distance d

√
1− v2/c2, as given in this case by (7.1)

on p. 116. Note that this separation is constant when v is constant.
It is not immediately obvious that Fself in (7.24) will be zero here. Let us see why

it is in fact zero. In the constant velocity case, vA
+ = v = vB

+, so
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Fself(constant velocity) =
e2

4c2




1+
v
c

(t− tA
+)2

(
1− v

c

) −
1− v

c
(t− tB

+)2
(

1+
v
c

)






1
0
0


 ,

and it only remains to find t− tA
+ and t− tB

+ from the defining conditions

c(t− tA
+) = xB(t)− xA(tA

+) , c(t− tB
+) = xB(tB

+)− xA(t) .

Now

xB(t) = x(t)+dγ−1 , x(t)− x(tA
+) = v(t− tA

+) ,

so

c(t− tA
+) = x(t)+dγ−1− x(tA

+)

= v(t− tA
+)+dγ−1 ,

and this implies that

(c− v)(t− tA
+) = dγ−1 ,

and finally,

t− tA
+ =

dγ−1

c− v
.

In a similar way, one has

t− tB
+ =

dγ−1

c+ v
.

But a little algebra now shows that

1+
v
c

(t− tA
+)2

(
1− v

c

) =
γ2(c2− v2)

d2 =
1− v

c
(t− tB

+)2
(

1+
v
c

) ,

whence

Fself(constant velocity) = 0 .

This result is exact, since in the constant velocity case, one does not have the pro-
blem of having to make some special assumption about the varying length of the
system.
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7.4 Power Series Expansion of Self-Force

The time has come to examine the self-force in more detail. The first task is to
analyse the retarded times tA

+ = tA
+(t,d) and tB

+ = tB
+(t,d), defined by (7.10) and

(7.14) on p. 118, viz.,

c(t− tA
+) = xB(t)− xA(tA

+) , c(t− tB
+) = xB(tB

+)− xA(t) (7.25)

As mentioned there, these simple relations lie at the heart of the self-force effect,
and in the more complex scenarios considered here, they are the source of all the
difficulty in the calculation.

7.4.1 Expansions for Retarded Times and Retarded Points

Expansion of tA
+

We seek an expansion of the form

tA
+(t,d) = tA

+(t,0)+
∂ tA

+

∂d

∣∣∣∣
d=0

d +
1
2

∂ 2tA
+

∂d2

∣∣∣∣
d=0

d2 +O(d3) . (7.26)

We obviously have tA
+(t,0) = t, i.e., the retarded time is just t itself when d = 0,

because A and B lie at the same point in space. For notational purposes in what
follows, we shall define

U :=
∂ tA

+

∂d

∣∣∣∣
d=0

, V :=
∂ 2tA

+

∂d2

∣∣∣∣
d=0

,

so that the above expansion becomes

t+(t,d) = t +Ud +
1
2

V d2 +O(d3) . (7.27)

We need to satisfy

c(t− tA
+) = xB(t)− xA(tA

+) ,

where

xA(tA
+) = x(tA

+) , xB(t) = x(t)+
d
γ

.

Hence,

c(t− tA
+) = x(t)− x(tA

+)+dγ−1 . (7.28)
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On the left-hand side, we can substitute the power series

c(t− tA
+) =−cUd− 1

2
cV d2 +O(d3) . (7.29)

We need an expansion for xA
+ := x(tA

+) considered as a function of t and d, viz.,

x(tA
+) = x(t)+

∂xA
+

∂d

∣∣∣∣
d=0

d +
1
2

∂ 2xA
+

∂d2

∣∣∣∣
d=0

d2 +O(d3) ,

where

∂xA
+

∂d
= vA

+
∂ tA

+

∂d
,

∂ 2xA
+

∂d2 = aA
+

(
∂ tA

+

∂d

)2

+ vA
+

∂ 2tA
+

∂d2 ,

with vA
+ := v(tA

+) and aA
+ := a(tA

+). Hence,

∂xA
+

∂d

∣∣∣∣
d=0

= vU ,
∂ 2xA

+

∂d2

∣∣∣∣
d=0

= aU2 + vV ,

and we have the expansion for the retarded position xA
+ in the form

xA
+ = x+ vUd +

1
2
(aU2 + vV )d2 +O(d3) .

This in turn implies

x− xA
+ =−vUd− 1

2
(aU2 + vV )d2 +O(d3) . (7.30)

The defining relation (7.28) for tA
+ can now be written

−cUd− 1
2

cV d2 +O(d3) =−vUd− 1
2
(aU2 + vV )d2 +dγ−1 +O(d3) ,

where we have simply substituted in (7.29) and (7.30). We now equate coefficients
of powers of d on either side to obtain the two relations





−Uc =
1
γ
− vU ,

−1
2

V c =−1
2
(aU2 + vV ) .

The solution is

U =
∂ tA

+

∂d

∣∣∣∣
d=0

=− 1
γ(c− v)

=−1
c

√
c+ v
c− v

(7.31)
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and

V =
∂ 2tA

+

∂d2

∣∣∣∣
d=0

=
a

γ2(c− v)3 =
a
c2

c+ v
(c− v)2 (7.32)

We now have the required expansion of tA
+ in the form

t− tA
+ =

1
γ(c− v)

d− a
2γ2(c− v)3 d2 +O(d3) (7.33)

The power series expansion of x− xA
+ is not needed for the self-force calculation.

Expansion of tB
+

We seek an expansion of the form

tB
+(t,d) = tB

+(t,0)+
∂ tB

+

∂d

∣∣∣∣
d=0

d +
1
2

∂ 2tB
+

∂d2

∣∣∣∣
d=0

d2 +O(d3) . (7.34)

As before, tB
+(t,0) = t, i.e., the retarded time is just t itself when d = 0, because A

and B lie at the same point in space. We define

U :=
∂ tB

+

∂d

∣∣∣∣
d=0

, V :=
∂ 2tB

+

∂d2

∣∣∣∣
d=0

,

so that the above expansion becomes

t+(t,d) = t +Ud +
1
2

V d2 +O(d3) , (7.35)

bearing in mind that this U and V are not the same as those in the last section.
The equation to solve this time is

c(t− tB
+) = xB(tB

+)− xA(t) ,

where

xA(t) = x(t) , xB(tB
+) = x(tB

+)+
d

γ
(
v(tB

+)
) .

So we have to expand both sides of

c(t− tB
+) = x(tB

+)+
d

γ
(
v(tB

+)
) − x(t) . (7.36)

On the left, we substitute the expansion
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c(t− tB
+) =−cUd− 1

2
cV d2 +O(d3) . (7.37)

We need an expansion for xB
+ := xB(tB

+) considered as a function of t and d, viz.,

xB(tB
+) = x(t)+

∂xB
+

∂d

∣∣∣∣
d=0

d +
1
2

∂ 2xB
+

∂d2

∣∣∣∣
d=0

d2 +O(d3) ,

where we have used the fact that xB
+(t,0) = x(t). Now

∂xB
+

∂d
= v(tB

+)
∂ tB

+

∂d
+

1
γ
(
v(tB

+)
) − dv(tB

+)a(tB
+)/c2

[
1− v(tB

+)2/c2
]1/2

∂ tB
+

∂d
,

and

∂ 2xB
+

∂d2 = a(tB
+)

(
∂ tB

+

∂d

)2

+ v(tB
+)

∂ 2tB
+

∂d2 −
2v(tB

+)a(tB
+)/c2

[
1− v(tB

+)2/c2
]1/2

∂ tB
+

∂d

−d
∂

∂d

{
v(tB

+)a(tB
+)/c2

[
1− v(tB

+)2/c2
]1/2

∂ tB
+

∂d

}
.

Hence,

∂xB
+

∂d

∣∣∣∣
d=0

= vU +
1
γ

,
∂ 2xB

+

∂d2

∣∣∣∣
d=0

= aU2 + vV − 2γav
c2 U ,

and we have the expansion for the retarded position xB
+ in the form

xB
+ = x+

(
vU +

1
γ

)
d +

1
2

(
aU2 + vV − 2γav

c2 U
)

d2 +O(d3) ,

or

xB
+− x =

(
vU +

1
γ

)
d +

1
2

(
aU2 + vV − 2γav

c2 U
)

d2 +O(d3) . (7.38)

Now (7.36) reads

c(t− tB
+) = xB

+− x ,

and substituting (7.37) and (7.38) into this, we have

−cUd− 1
2

cV d2 +O(d3) =
(

vU +
1
γ

)
d +

1
2

(
aU2 + vV − 2γav

c2 U
)

d2 +O(d3) .

Equating coefficients of powers of d on either side, we obtain the two relations
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−Uc = vU +
1
γ

,

−1
2

V c =
1
2

(
aU2 + vV − 2γav

c2 U
)

,

with solutions

U =
∂ tB

+

∂d

∣∣∣∣
d=0

=− 1
γ(c+ v)

=−1
c

√
c− v
c+ v

(7.39)

and

V =
∂ 2tB

+

∂d2

∣∣∣∣
d=0

=− a
c2(c+ v)

(7.40)

We now have the required expansion of tB
+ in the form

t− tB
+ =

1
γ(c+ v)

d +
a

2c2(c+ v)
d2 +O(d3) (7.41)

The power series expansion of x− xB
+ is not needed for the self-force calculation.

7.4.2 Expansion for Self-Force

We now have to turn back to (7.24) on p. 121 for the self-force, viz.,

Fself =
e2

4c2




1+
vA
+

c

(t− tA
+)2

(
1− vA

+

c

) −
1− vB

+

c

(t− tB
+)2

(
1+

vB
+

c

)







1
0
0


 (7.42)

This exercise can be broken down into parts.

Power Series Expansion of 1/(t− tA
+)2

We seek a series expansion of 1/(t − tA
+)2 to O(d−1) in order to get Fself to this

accuracy. Define

g(t,d) :=
d2

[
t− tA

+(t,d)
]2 .
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The leading term in the expansion of g will be O(d0), and we obtain an expansion
for 1/(t− tA

+)2 from the expansion for g(t,d)/d2. We use the results

t− tA
+ =

1
γ(c− v)

d− a
2γ2(c− v)3 d2 +O(d3) , (7.43)

tA
+ = t− 1

γ(c− v)
d +

a
2γ2(c− v)3 d2 +O(d3) , (7.44)

and

∂ tA
+

∂d
=− 1

γ(c− v)
+

a
γ2(c− v)3 d +O(d2) . (7.45)

First note that

g(t,0) = c2 c− v
c+ v

= γ2(c− v)2 ,

using (7.43). Further,

∂g
∂d

=
2d

(t− tA
+)2 +

2d2

(t− tA
+)3

∂ tA
+

∂d

=
2d

(t− tA
+)3

(
t− tA

+ +d
∂ tA

+

∂d

)

=
2d

(t− tA
+)3

[
a

2γ2(c− v)3 d2 +O(d3)
]

,

after substituting in the expansions (7.43) and (7.45). Now using (7.43) once more,

∂g
∂d

∣∣∣∣
d=0

= lim
d→0

2d
(t− tA

+)3

[
a

2γ2(c− v)3 d2 +O(d3)
]

= aγ .

Finally, we have our expansion of g, viz.,

g(t,d) = γ2(c− v)2 +aγd +O(d2) ,

and the required expansion for 1/(t− tA
+)2, viz.,

1
(t− tA

+)2 =
γ2(c− v)2

d2 +
aγ
d

+O(d0) (7.46)
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Power Series Expansion of 1/(t− tB
+)2

We seek a series expansion of 1/(t − tB
+)2 to O(d−1) in order to get Fself to this

accuracy. Define

h(t,d) :=
d2

[
t− tB

+(t,d)
]2 .

The leading term in the expansion of h will be O(d0), and we obtain an expansion
for 1/(t− tB

+)2 from the expansion for h(t,d)/d2. We use the results

t− tB
+ =

1
γ(c+ v)

d +
a

2c2(c+ v)
d2 +O(d3) , (7.47)

tB
+ = t− 1

γ(c+ v)
d− a

2c2(c+ v)
d2 +O(d3) , (7.48)

and

∂ tB
+

∂d
=− 1

γ(c+ v)
− a

c2(c+ v)
d +O(d2) . (7.49)

First note that

h(t,0) = γ2(c+ v)2 ,

using (7.47). Further,

∂h
∂d

=
2d

(t− tB
+)2 +

2d2

(t− tB
+)3

∂ tB
+

∂d

=
2d

(t− tB
+)3

(
t− tB

+ +d
∂ tB

+

∂d

)

=
2d

(t− tB
+)3

[
− a

2c2(c+ v)
d2 +O(d3)

]

= − d3

(t− tB
+)3

[
a

c2(c+ v)
+O(d)

]
,

after substituting in the expansions (7.47) and (7.49). Now using (7.47) once more,

∂h
∂d

∣∣∣∣
d=0

=− lim
d→0

{
d3

(t− tB
+)3

[
a

c2(c+ v)
+O(d)

]}
=− ac2

γ(c− v)2 .

Finally, we have our expansion of h, viz.,
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h(t,d) = γ2(c+ v)2− ac2

γ(c− v)2 d +O(d2) ,

and the required expansion for 1/(t− tB
+)2, viz.,

1
(t− tB

+)2 =
γ2(c+ v)2

d2 − ac2

γ(c− v)2d
+O(d0) (7.50)

Power Series Expansion of (c+ vA
+)/(c− vA

+)

Define

e(t,d) :=
c+ v(tA

+)
c− v(tA

+)
,

recalling that vA
+ := v(tA

+). We require the series expansion up to O(d). Obviously,

e(t,0) =
c+ v
c− v

.

Now

∂e
∂d

=

{
1

c− v(tA
+)

+
c+ v(tA

+)[
c− v(tA

+)
]2

}
a(tA

+)
∂ tA

+

∂d

=
2caA

+

(c− vA
+)2

∂ tA
+

∂d
,

and this has to be evaluated at d = 0, using the result (7.31) on p. 124, viz.,

∂ tA
+

∂d

∣∣∣∣
d=0

=− 1
γ(c− v)

.

We soon find

∂e
∂d

∣∣∣∣
d=0

=− 2ca
γ(c− v)3 .

Hence,

e(t,d) =
c+ v(tA

+)
c− v(tA

+)
=

c+ v
c− v

− 2ca
γ(c− v)3 d +O(d2) (7.51)
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Power Series Expansion of (c− vB
+)/(c+ vB

+)

Define

f (t,d) :=
c− vB

+

c+ vB
+

.

We have to be careful here, because, recalling (7.2) on p. 116,

vB
+ := vB(tB

+) = v(tB
+)− γ

(
v(tB

+)
)
v(tB

+)a(tB
+)d

c2 ,

which has an explicit dependence on d, as well as a more complicated dependence
on d through tB

+.
We require the series expansion up to O(d). Obviously,

f (t,0) =
c− v
c+ v

.

Now

∂ f
∂d

=
[
− 1

c+ vB
+
− c− vB

+

(c+ vB
+)2

][
∂vB

+

∂ tB
+

∂ tB
+

∂d
− γ

(
v(tB

+)
)
v(tB

+)a(tB
+)d

c2

]

= − 2c
(c+ vB

+)2

[
∂vB

+

∂ tB
+

∂ tB
+

∂d
− γ

(
v(tB

+)
)
v(tB

+)a(tB
+)d

c2

]
.

A short calculation shows that

dvB

dt
=

d
dt

[
v(t)− γ

(
v(t)

)
v(t)a(t)d
c2

]

= a− γ3a2

c2 d− γvȧ
c2 d ,

whence

∂vB
+

∂ tB
+

= a(tB
+)− γ

(
v(tB

+)
)3a(tB

+)2

c2 d− γ
(
v(tB

+)
)
v(tB

+)ȧ(tB
+)

c2 d .

Note then that the more complicated terms here are irrelevant to us, because

∂vB
+

∂ tB
+

∣∣∣∣
d=0

= a(t) .

Returning to the above expression for ∂ f/∂d and inserting (7.39) on p. 127, viz.,
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∂ tB
+

∂d

∣∣∣∣
d=0

=− 1
γ(c+ v)

,

we have

∂ f
∂d

=− 2c
(c+ v)2

[
− a

γ(c+ v)
− γva

c2

]
.

Hence, after a little algebra,

∂ f
∂d

∣∣∣∣
d=0

=
2aγ

(c+ v)2 ,

and we have the required expansion

f (t,d) =
c− vB

+

c+ vB
+

=
c− v
c+ v

+
2aγ

(c+ v)2 d +O(d2) (7.52)

Power Series Expansion for Fself

Returning to (7.42), we are now ready to expand the EM self-force to O(d−1), using
(7.46) and (7.51) to obtain

1
(t− tA

+)2

c+ v(tA
+)

c− v(tA
+)

=
[

γ2(c− v)2

d2 +
aγ
d

+O(d0)
][

c+ v
c− v

− 2ca
γ(c− v)3 d +O(d2)

]

=
c2

d2 −
aγ
d

+O(d0) ,

and (7.50) and (7.52) to obtain

1
(t− tB

+)2

c− vB
+

c+ vB
+

=
[

γ2(c+ v)2

d2 − ac2

γ(c− v)2d
+O(d0)

][
c− v
c+ v

+
2aγ

(c+ v)2 d +O(d2)
]

=
c2

d2 +aγ(2γ2−1)
1
d

+O(d0) ,

whence finally,

Fself =− e2

2c2d
aγ3




1
0
0


+O(d0) (7.53)
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7.5 Interpreting the Leading Order Term in the Self-Force

As for the calculation in Chap. 6, the first observation here is that there is no term
going as d−2. Once again the leading order goes as d−1 so the self-force diverges if
we let d → 0, i.e., if we let the system tend to a point particle. In the present case, we
have not calculated the O(d0) term in the self-force, which would correspond to the
radiation reaction force, independent of the system dimensions. This is because the
calculation would be much more involved. In fact, one then requires the expansions
of the retarded times tA

+ and tB
+ to O(d3).

There is no point repeating everything that was said in Sect. 6.6.1. Let us just
observe that the mass renormalisation is slightly different here, viz.,

mlongitudinal
ren := m0 +

e2

2c2d
, (7.54)

to be compared with (6.51) on p. 110, viz.,

mtransverse
ren := m0 +

e2

4c2d
, (7.55)

So here is a very interesting feature of the electromagnetic mass, as derived from
the self-force, namely, it may depend which way the object is moving relative to its
own geometry. This is not something one normally expects of the inertial mass, and
yet it is a fact that, in bound systems that do not have spherical symmetry, the inertia
of the system will depend which way it moves relative to its own geometry. This is
what we have just shown for an electromagnetic binding force.

We should also mention the miraculous factor of γ3 in (7.53), which allows one
to say that the contribution e2/2c2d to the total inertia of the system will increase
as γ(v) with the speed v of the system, in just the way mass is supposed to increase
with speed in special relativity (see the discussion in Sect. 6.6.1). But there is a
very important proviso in this case, because it is not really clear what the speed of
the system is when it moves longitudinally. The point is that A and B generally have
different speeds, and we have calculated γ for the speed of A. Indeed, since different
γ factors are associated with A and B, it is not obvious that we can just add up a
force on A and a force on B.

In pre-relativistic physics, we had a whole theory of rigid bodies, and it made
sense to add up forces acting on different parts of a body, because one could deduce
something about the center of mass of the body. What we lack here is a proper
theory of rigid bodies in relativity theory, something which will be discussed further
in Chap. 12. For the moment though, let us just say that it is still satisfying to see
that we get the γ factor at a certain level of approximation.



Chapter 8
Self-Force for Transverse Rotational Motion

8.1 Setting the Scene

We consider the dumbbell charge system rotating about a fixed center, perpendicular
to its axis, in such a way that it always lies along a radial line from the center of
rotation, as shown in Fig. 8.1. So as usual we have two like charges qe/2, and they
are assumed to be separated by a constant distance d. As we shall see, if this distance
is to be the rest frame length of the system, this is something that has to be cleverly
engineered by the binding force in the system. At least in this case, both A and B
have constant speeds, always instantaneously perpendicular to the axis joining them,
so we do not have to worry about FitzGerald contraction.

The beauty of this scenario, as compared with those discussed in Chaps. 6 and
7, is that the acceleration of either A or B is now along the system axis (the line
joining A and B), while the velocity is always instantaneously perpendicular to the
acceleration. A priori, it is not at all obvious that the electromagnetic self-force will
lie along the system axis, i.e., parallel to the acceleration.

Let us formulate this. We shall take the position vectors of A and B at time t to
be

rA(t) =




Rcosωt
Rsinωt

0


 , rB(t) =




(R+d)cosωt
(R+d)sinωt

0


 , (8.1)

where R is thus the radial distance of A from the center of rotation, d is the length
of the system (the separation of A and B), which is constant in this scenario, and ω
is the angular velocity of either A or B. The velocities are

vA(t) = ωR



−sinωt
cosωt

0


 , vB(t) = ω(R+d)



−sinωt
cosωt

0


 , (8.2)
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Fig. 8.1 Dumbbell charge system under rotational motion perpendicular to its axis

whence A and B move at different speeds ωR and ω(R+d), respectively. They also
have different accelerations

aA(t) =−ω2R




cosωt
sinωt

0


 , aB(t) =−ω2(R+d)




cosωt
sinωt

0


 , (8.3)

but both directed toward the center of rotation.

8.2 Retarded Times and Retarded Displacement Vectors

We know that the first step in calculating the electric and magnetic fields produced
by A at B, and by B at A, is to find the retarded times tA

+ and tB
+, treating them as

functions of both t and d and expanding them to second order in a power series in
the small quantity d.

A

B

vA

vB

d

x

y

ωt

R

•

•
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When we consider B at time t, the condition on the relevant retarded time tA
+ for

A, i.e., the time tA
+ < t at which A generated the fields that now concern B, is

∣∣rB(t)− rA(tA
+)

∣∣2 = c2(t− tA
+)2 . (8.4)

This leads to

(R+d)2 +R2−2R(R+d)cosω(t− tA
+) = c2(t− tA

+)2 (8.5)

having used the identity

cosωt cosωtA
+ + sinωt sinωtA

+ = cosω(t− tA
+) .

Actually, we shall define the retarded displacement vector from A at the appropriate
retarded time tA

+ to B at the present time t, viz.,

rAB
+ (t) := rB(t)− rA(tA

+) =




(R+d)cosωt−RcosωtA
+

(R+d)sinωt−RsinωtA
+

0


 , (8.6)

since this is a vector we must also eventually expand in a power series in d.
In a like manner, when we consider A at time t, the condition on the relevant

retarded time tB
+ for B, i.e., the time tB

+ < t at which B generated the fields that now
concern A, is

∣∣rA(t)− rB(tB
+)

∣∣2 = c2(t− tB
+)2 . (8.7)

This leads to

(R+d)2 +R2−2R(R+d)cosω(t− tB
+) = c2(t− tB

+)2 (8.8)

which is exactly the same as the condition on tA
+ . This means that we will only need

to work out one expansion, say for tA
+ , and then the other will be identical. Once

again, we shall define the retarded displacement vector from B at the appropriate
retarded time tB

+ to A at the present time t, viz.,

rBA
+ (t) := rA(t)− rB(tB

+) =




Rcosωt− (R+d)cosωtB
+

Rsinωt− (R+d)sinωtB
+

0


 , (8.9)

since we shall also eventually expand this in a power series in d.
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8.3 Power Series Expansion of Retarded Times

As mentioned above, we shall only need to do this for tA
+ , whence the other retarded

time will have the same expansion. As usual, we treat tA
+ as a function of t and d,

where t is the time at which we are considering B, and seek an expansion of the
form

tA
+(t,d) = tA

+(t,0)+
∂ tA

+

∂d

∣∣∣∣
d=0

d +
1
2

∂ 2tA
+

∂d2

∣∣∣∣
d=0

d2 +O(d3) . (8.10)

As usual, tA
+(t,0) = t. Now one way to obtain ∂ tA

+/∂d is just to differentiate both
sides of the relation (8.5) with respect to d, to obtain

∂ tA
+

∂d
=

R+d−Rcosω(t− tA
+)

ωR(R+d)sinω(t− tA
+)− c2(t− tA

+)
,

then take the limit of the right-hand side as d → 0. This is reasonably effective, but
the calculation for ∂ 2tA

+/∂d2 is not. A better approach is to define functions

f (d) := c2(t− tA
+)2 , g(d) := (R+d)2 +R2−2R(R+d)cosω(t− tA

+) ,

expand each to O(d3), and equate coefficients of equal powers of d on either side of
the relation f = g [which is just (8.5)].

First define the notation

U :=
∂ tA

+

∂d

∣∣∣∣
d=0

, V :=
∂ 2tA

+

∂d2

∣∣∣∣
d=0

,

so that (8.10) becomes

tA
+ = t +Ud +

1
2

V d2 +O(d3) , t− tA
+ =−Ud− 1

2
V d2 +O(d3) . (8.11)

Further

∂ tA
+

∂d
= U +V d +O(d2) ,

∂ 2tA
+

∂d2 = V +O(d) . (8.12)

Now

f (d) = f (0)+ f (1)(0)d +
1
2

f (2)(0)d2 +
1
6

f (3)(0)d3 +O(d4) ,

where f (0) = 0, and

f (1)(d) :=
d f
dd

=−2c2(t− tA
+)

∂ tA
+

∂d
,
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f (2)(d) :=
d2 f
dd2 = 2c2

(
∂ tA

+

∂d

)2

−2c2(t− tA
+)

∂ 2tA
+

∂d2 ,

and

f (3)(d) :=
d3 f
dd3 = 6c2 ∂ tA

+

∂d
∂ 2tA

+

∂d2 −2c2(t− tA
+)

∂ 3tA
+

∂d3 .

Evaluating these at d = 0,

f (1)(0) = 0 , f (2)(0) = 2c2U2 , f (3)(0) = 6c2UV ,

whence

c2(t− tA
+)2 = c2U2d2 + c2UV d3 +O(d4) (8.13)

Likewise for g, we have

g(d) = g(0)+g(1)(0)d +
1
2

g(2)(0)d2 +
1
6

g(3)(0)d3 +O(d4) ,

where g(0) = 0, and

g(1)(d) = 2(R+d)−2Rcosω(t− tA
+)−2ωR(R+d)sinω(t− tA

+)
∂ tA

+

∂d
,

g(2)(d) = 2−4ωRsinω(t− tA
+)

∂ tA
+

∂d
+2ω2R(R+d)cosω(t− tA

+)
(

∂ tA
+

∂d

)2

−2ωR(R+d)sinω(t− tA
+)

∂ 2tA
+

∂d2 ,

and

g(3)(d) = 6ω2Rcosω(t− tA
+)

(
∂ tA

+

∂d

)2

−6ωRsinω(t− tA
+)

∂ 2tA
+

∂d2

−2ω3R(R+d)sinω(t− tA
+)

(
∂ tA

+

∂d

)3

−2ωR(R+d)sinω(t− tA
+)

∂ 3tA
+

∂d3

+6ω2R(R+d)cosω(t− tA
+)

∂ tA
+

∂d
∂ 2tA

+

∂d2 .

Evaluating these at d = 0,

g(1)(0) = 0 , g(2)(0) = 2(1+ω2R2U2) , g(3)(0) = 6ω2RU(U +RV ) ,

whence
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(R+d)2 +R2−2R(R+d)cosω(t− tA
+)

= (1+ω2R2U2)d2 +ω2RU(U +RV )d3 +O(d4)
(8.14)

Now equating the coefficients of equal powers of d on the right-hand sides of (8.13)
and (8.14), we obtain the relations

{
c2U2 = 1+ω2R2U2 ,

c2UV = ω2RU(U +RV ) .

The solution is

U =−γ
c

, V =−ω2Rγ3

c3 ,

where we have defined

γ :=
(

1− ω2R2

c2

)−1/2

,

the notation being justified by the fact that ωR is the speed of A, so that this is the
usual relativistic γ factor for A. (But note that it is not the γ factor for B.)

With these results, we can now write down the expansions for tA
+ , but also for tB

+,
from the observation that the determining relation (8.8) for the latter is precisely the
same as the determining relation (8.5) for tA

+ . All the results needed for the following
calculation are summarised here.

Summary of Results

Regarding tA
+ , we now have

U :=
∂ tA

+

∂d

∣∣∣∣
d=0

=−γ
c

, V :=
∂ 2tA

+

∂d2

∣∣∣∣
d=0

=−ω2Rγ3

c3 (8.15)

tA
+(t,d) = t− γ

c
d− ω2Rγ3

2c3 d2 +O(d3) (8.16)

t− tA
+(t,d) =

γ
c

d +
ω2Rγ3

2c3 d2 +O(d3) (8.17)
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∂ tA
+

∂d
=−γ

c
− ω2Rγ3

c3 d +O(d3) ,
∂ 2tA

+

∂d2 =−ω2Rγ3

c3 +O(d) (8.18)

Regarding tB
+,

∂ tB
+

∂d

∣∣∣∣
d=0

=−γ
c

,
∂ 2tB

+

∂d2

∣∣∣∣
d=0

=−ω2Rγ3

c3 (8.19)

tB
+(t,d) = t− γ

c
d− ω2Rγ3

2c3 d2 +O(d3) (8.20)

t− tB
+(t,d) =

γ
c

d +
ω2Rγ3

2c3 d2 +O(d3) (8.21)

∂ tB
+

∂d
=−γ

c
− ω2Rγ3

c3 d +O(d3) ,
∂ 2tB

+

∂d2 =−ω2Rγ3

c3 +O(d) (8.22)

One thing to note here is that t− tA
+ and t− tB

+ are constant in time to this order. Of
course, they must be constant in time to all orders, by the symmetry of the scenario
we are considering.

8.4 Power Series Expansion of Retarded Displacement Vectors

The next task to prepare for calculating the self-force is to expand the retarded dis-
placement vectors rAB

+ (t) and rBA
+ (t) defined by

rAB
+ (t)=




(R+d)cosωt−RcosωtA
+

(R+d)sinωt−RsinωtA
+

0


 , rBA

+ (t)=




Rcosωt− (R+d)cosωtB
+

Rsinωt− (R+d)sinωtB
+

0


 .

(8.23)

For this purpose, we shall require expansions of cosωtA
+ , sinωtA

+ , cosωtB
+, and

sinωtB
+ to O(d2). The latter two will be immediate once we have the first two. [But

note that the expansions of rAB
+ (t) and rBA

+ (t) in powers of d will not be the same.]
Define h(d) := cosωtA

+ . Then h(0) = cosωt and

h(1)(d) =−ω sinωtA
+

∂ tA
+

∂d
, h(2)(d) =−ω2 cosωtA

+

(
∂ tA

+

∂d

)2

−ω sinωtA
+

∂ 2tA
+

∂d2 ,
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whence

h(1)(0) =
γω
c

sinωt , h(2)(0) =−ω2γ2

c2 cosωt +
ω3γ3R

c3 sinωt ,

using (8.15). Since

h(d) = h(0)+h(1)(0)d +
1
2

h(2)(0)d2 +O(d3) ,

we thus find

cosωtA
+ = cosωt +

γω
c

d sinωt +
ω2γ2

2c2 d2
(

ωγR
c

sinωt− cosωt
)

+O(d3)

(8.24)

Now define i(d) := sinωtA
+ , so that i(0) = sinωt and

i(1)(d) = ω cosωtA
+

∂ tA
+

∂d
, i(2)(d) =−ω2 sinωtA

+

(
∂ tA

+

∂d

)2

+ω cosωtA
+

∂ 2tA
+

∂d2 ,

whence

i(1)(0) =−γω
c

cosωt , i(2)(0) =−ω2γ2

c2 sinωt− ω3γ3R
c3 cosωt ,

using (8.15). Since

i(d) = i(0)+ i(1)(0)d +
1
2

i(2)(0)d2 +O(d3) ,

we thus find

sinωtA
+ = sinωt− γω

c
d cosωt− ω2γ2

2c2 d2
(

ωγR
c

cosωt + sinωt
)

+O(d3)

(8.25)

Hence we have immediately the corresponding results for tB
+, viz.,

cosωtB
+ = cosωt +

γω
c

d sinωt +
ω2γ2

2c2 d2
(

ωγR
c

sinωt− cosωt
)

+O(d3)

(8.26)

and
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sinωtB
+ = sinωt− γω

c
d cosωt− ω2γ2

2c2 d2
(

ωγR
c

cosωt + sinωt
)

+O(d3)

(8.27)

These can be inserted in (8.23) to obtain expansions of the retarded displacement
vectors:

rAB
+ (t) =

(
d +

γ2ω2R
2c2 d2

)



cosωt− γωR
c

sinωt

sinωt +
γωR

c
cosωt

0


+O(d3) (8.28)

and

rBA
+ (t) =−d




cosωt +
γωR

c
sinωt

sinωt− γωR
c

cosωt

0




+d2




−γω
c

sinωt− γ2ω2R
2c2

[
γωR

c
sinωt− cosωt

]

γω
c

cosωt +
γ2ω2R

2c2

[
γωR

c
cosωt + sinωt

]

0




+O(d3)

(8.29)

Now let us estimate the lengths of these two vectors to O(d2) and check that we do
indeed obtain |rAB

+ |= rAB
+ as given by (8.17), viz.,

rAB
+ = c(t− tA

+) = γd +
γ3ω2R

2c2 d2 +O(d3) , (8.30)

and |rBA
+ |= rBA

+ as given by (8.21), viz.,

rBA
+ = c(t− tB

+) = γd +
γ3ω2R

2c2 d2 +O(d3) . (8.31)

This will just be a confirmation that no mistakes have been made. Both rAB
+ and rBA

+
have the form

r = pd +qd2 +O(d3) ,

and
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|r|2 = p2d2 +2p ·qd3 +O(d4) = p2d2
[

1+
2p ·q

p2 d +O(d2)
]

,

whence

|r|= |p|d
[

1+
p ·q
p2 d +O(d2)

]
= |p|d

(
1+

p ·q
p2 d

)
+O(d3) .

So, for example, for rAB
+ in (8.28),

p =




cosωt− γωR
c

sinωt

sinωt +
γωR

c
cosωt

0


 , q =

γ2ω2R
2c2




cosωt− γωR
c

sinωt

sinωt +
γωR

c
cosωt

0


 ,

(8.32)

and we soon find

|p|= γ , p ·q =
γ4ω2R

2c2 ,

whence

∣∣rAB
+

∣∣ = γd +
γ3ω2R

2c2 d2 +O(d3) ,

which confirms (8.30).
Despite the greater complexity of the expression (8.29), with

p =−




cosωt +
γωR

c
sinωt

sinωt− γωR
c

cosωt

0


 (8.33)

and

q =




−γω
c

sinωt− γ2ω2R
2c2

[
γωR

c
sinωt− cosωt

]

γω
c

cosωt +
γ2ω2R

2c2

[
γωR

c
cosωt + sinωt

]

0




, (8.34)

we still find that

|p|= γ , p ·q =
γ4ω2R

2c2 ,
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whence

∣∣rBA
+

∣∣ = γd +
γ3ω2R

2c2 d2 +O(d3) ,

which confirms (8.31).
Before ending this section and beginning on the calculation of the self-force pro-

per, one thing we shall be needing eventually, to calculate the magnetic fields gene-
rated by A and B, is the unit retarded displacement vectors rAB

+ /rAB
+ and rBA

+ /rBA
+ .

Returning to the general case of a vector of the form r = pd +qd2 +O(d3), we find

r
|r| =

p+qd +O(d2)

|p|
[

1+
p ·q
p2 d +O(d2)

]

=
1
|p|

[
p+qd +O(d2)

][
1− p ·q

p2 d +O(d2)
]

=
p
|p| +

1
|p|

(
q− p ·q

p2 p
)

d +O(d2) . (8.35)

Applying this to the case r = rAB
+ , where p and q are given in (8.32), we find that

q = p ·q/p2, whence the unit vector has the simple form

rAB
+

rAB
+

=
1
γ




cosωt− γωR
c

sinωt

sinωt +
γωR

c
cosωt

0


+O(d2) (8.36)

with no term of O(d). It turns out that this level of accuracy will be sufficient later
for calculating the magnetic field at B due to A.

Regarding the other unit retarded displacement vector rBA
+ /rBA

+ , application of
the above rule for p and q as given in (8.33) and (8.34) leads to

rBA
+

rBA
+

=−1
γ




cosωt +
γωR

c
sinωt

sinωt− γωR
c

cosωt

0


+

ω
c




γωR
c

cosωt− sinωt

γωR
c

sinωt + cosωt

0


d +O(d2)

(8.37)
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8.5 Power Series Expansion of Electric Self-Force

We come back now to the expression (2.61) on p. 21 for the electric field generated
by a point charge in motion, viz.,

E =
qe

8πε0

(
r01− r01v

c

)(
1− v2

c2

)
+

r01

c2 ×
[(

r01− r01v
c

)
×dv

dt

]

(r01− r01·v/c)3 , (8.38)

as presented in Chap. 2, and as already applied in Chaps. 6 and 7.

8.5.1 Electric Force of A on B

We shall find the electric field EA(at B) at B due to A as given by

EA(at B) (8.39)

=
qe

8πε0

(
rAB
+ − rAB

+ vA
+

c

)[
1− (vA

+)2

c2

]
+

rAB
+

c2 ×
[(

rAB
+ − rAB

+ vA
+

c

)
× dvA

dt

∣∣∣∣
t=tA

+

]

(
rAB
+ − rAB

+ ·vA
+/c

)3 ,

then apply the usual rule to get the electric force

FA
elec(on B) =

qe

2
EA(at B) . (8.40)

Let us begin with the expansion of vA
+ = vA(tA

+), recalling from (8.2) on p. 135 that

vA(tA
+) = ωR



−sinωtA

+

cosωtA
+

0


 ,

and substituting in the expansions (8.24) and (8.25) for cosωtA
+ and sinωtA

+ to obtain

vA
+ = ωR



−sinωt
cosωt

0


+

ω2Rγ
c




cosωt
sinωt

0


d

+
γ2ω3R

2c2




γωR
c

cosωt + sinωt
γωR

c
sinωt− cosωt

0


d2 +O(d3)

(8.41)
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A short calculation now finds
(
vA

+
)2 = ω2R2 +O(d3) ,

whence

1− (vA
+)2

c2 = γ−2 +O(d3) (8.42)

Further efforts using (8.28) for rAB
+ , (8.30) for rAB

+ , and (8.41) for vA
+ lead to

rAB
+ − rAB

+ ·vA
+

c
=

d
γ
− ω2Rγ

2c2 d2 +O(d3) (8.43)

and

rAB
+ − rAB

+ vA
+

c
=

(
d− γ2ω2R

2c2 d2
)




cosωt
sinωt

0


+O(d3) (8.44)

We now have

(
rAB
+ − rAB

+ vA
+

c

)[
1− (vA

+)2

c2

]
=

(
d
γ2 −

ω2R
2c2 d2

)



cosωt
sinωt

0


+O(d3) (8.45)

Furthermore, the other term in the numerator of (8.39) is zero to O(d2), i.e.,

rAB
+

c2 ×
[(

rAB
+ − rAB

+ vA
+

c

)
× dvA

dt

∣∣∣∣
t=tA

+

]
= O(d3) (8.46)

for the following reason. By (8.3),

dvA

dt

∣∣∣∣
t=tA

+

=−ω2R




cosωtA
+

sinωtA
+

0


 =−ω2R




cosωt
sinωt

0


+O(d) ,

whence
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(
rAB
+ − rAB

+ vA
+

c

)
× dvA

dt

∣∣∣∣
t=tA

+

=−ω2R
(

d− γ2ω2R
2c2 d2

)



cosωt
sinωt

0


×




cosωt
sinωt

0


+O(d2)

=O(d2) .

But rAB
+ = O(d), so (8.46) holds.

Referring back to (8.39), we now have

EA(at B) =
qe

8πε0

(
d
γ2 −

ω2R
2c2 d2

)



cosωt
sinωt

0


+O(d3)

[
d
γ
− ω2Rγ

2c2 d2 +O(d3)
]3 ,

whence finally,

EA(at B) =
qeγ

8πε0d2




cosωt
sinωt

0


+

qe

8πε0

γ3ω2R
c2d




cosωt
sinωt

0


+O(d0) (8.47)

Then by (8.40), and defining e by e2 = q2
e/4πε0, we have the electric force of A on

B in the form

FA
elec(on B) =

e2γ
4d2




cosωt
sinωt

0


+

e2

4c2d
ω2Rγ3




cosωt
sinωt

0


+O(d0) (8.48)

which we may note immediately to be radially outward.

8.5.2 Electric Force of B on A

We shall find the electric field EB(at A) at A due to B as given by

EB(at A) (8.49)

=
qe

8πε0

(
rBA
+ − rBA

+ vB
+

c

)[
1− (vB

+)2

c2

]
+

rBA
+

c2 ×
[(

rBA
+ − rBA

+ vB
+

c

)
× dvB

dt

∣∣∣∣
t=tB

+

]

(
rBA
+ − rBA

+ ·vB
+/c

)3 ,

then apply the usual rule to get the electric force
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FB
elec(on A) =

qe

2
EB(at A) . (8.50)

Let us begin with the expansion of vB
+ = vB(tB

+), recalling from (8.2) on p. 135 that

vB(tB
+) = ω(R+d)



−sinωtB

+

cosωtB
+

0


 ,

and substituting in the expansions (8.26) and (8.27) for cosωtB
+ and sinωtB

+ to obtain

vB
+ = ωR



−sinωt
cosωt

0


+




ω2Rγ
c

cosωt−ω sinωt

ω2Rγ
c

sinωt +ω cosωt

0




d +O(d2) (8.51)

keeping only terms to O(d). (Note that only this order was ever used in the expres-
sion for vA

+ too.) A short calculation now finds

(
vB

+
)2 = ω2R2 +2ω2Rd +O(d2) ,

whence

1− (vB
+)2

c2 = γ−2− 2ω2R
c2 d +O(d2) (8.52)

Further efforts using (8.29) for rBA
+ , (8.31) for rBA

+ , and (8.51) for vB
+ lead to

rBA
+ − rBA

+ ·vB
+

c
=

d
γ
− ω2Rγ

2c2 d2 +O(d3) (8.53)

Interestingly, this is exactly the same as the expression (8.43) for rAB
+ − rAB

+ ·vA
+/c.

We also find

rBA
+ − rBA

+ vB
+

c
=−

(
d +

γ2ω2R
2c2 d2

)



cosωt
sinωt

0


+O(d3) (8.54)

We now have
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(
rBA
+ − rBA

+ vB
+

c

)[
1− (vB

+)2

c2

]
=

(
− d

γ2 +
3ω2R
2c2 d2

)



cosωt
sinωt

0


+O(d3) (8.55)

Furthermore, the other term in the numerator of (8.49) is zero to O(d2), i.e.,

rBA
+

c2 ×
[(

rBA
+ − rBA

+ vB
+

c

)
× dvB

dt

∣∣∣∣
t=tB

+

]
= O(d3) (8.56)

for the following reason. By (8.3),

dvB

dt

∣∣∣∣
t=tB

+

=−ω2(R+d)




cosωtA
+

sinωtA
+

0


 =−ω2R




cosωt
sinωt

0


+O(d) ,

whence

(
rBA
+ − rBA

+ vB
+

c

)
× dvB

dt

∣∣∣∣
t=tB

+

= ω2R
(

d +
γ2ω2R

2c2 d2
)



cosωt
sinωt

0


×




cosωt
sinωt

0


+O(d2)

=O(d2) .

But rBA
+ = O(d), so (8.56) holds.

Referring back to (8.49), we now have

EB(at A) =
qe

8πε0

(
− d

γ2 +
3ω2R
2c2 d2

)



cosωt
sinωt

0


+O(d3)

[
d
γ
− ω2Rγ

2c2 d2 +O(d3)
]3 ,

whence finally,

EB(at A) =− qeγ
8πε0d2




cosωt
sinωt

0


+O(d0) (8.57)

with no term O(d−1). Then by (8.50), and defining e by e2 = q2
e/4πε0, we have the

electric force of B on A in the form
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FB
elec(on A) =− e2γ

4d2




cosωt
sinωt

0


+O(d0) (8.58)

which we may note immediately to be radially outward.

8.5.3 Electric Self-Force

We now simply add together the results in (8.48) and (8.58) to obtain

Fself
elec =

e2

4c2d
ω2Rγ3




cosωt
sinωt

0


+O(d0) (8.59)

The first thing to note is that the terms O(d−2), which are basically Coulomb terms,
cancel one another. Secondly, it is worth comparing this with the O(d−1) term of
(6.48) on p. 109, for the scenario in which the system is accelerating along a straight
line perpendicular to its axis. Note that ω2R is the magnitude of the acceleration, so
we have exactly the same magnitude, and Fself

elec is directed radially outward, i.e., in
the direction opposite to the acceleration. It also contains a γ3 factor, but note that
the comments in Sect. 7.5 apply, because different γ factors are associated with A
and B, and the γ appearing in (8.59) is just the one associated with A.

So here we have a different scenario to the one in Chap. 6, since the acceleration
is along the system axis and perpendicular to the velocity, whereas it was perpen-
dicular to the system axis and parallel to the velocity in Chap. 6. But the mass
renormalisation due to the electric self-force is the same in both cases, viz.,

mren := m0 +
e2

4c2d
. (8.60)

However, there are magnetic fields and we need to consider them.

8.6 Power Series Expansion of Magnetic Self-Force

According to the formula (2.62) given on p. 21 of Chap. 2, the magnetic field at B
due to A is given by

BA(at B) =
rAB
+ ×EA(at B)

crAB
+

, (8.61)
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where EA(at B) is given by (8.47), and the magnetic force of A on B is then

FA
mag(on B) =

qe

2
vB(t)×BA(at B) . (8.62)

We have already calculated the unit retarded displacement vector rAB
+ /rAB

+ in (8.36)
on p. 145, and a short calculation gives

BA(at B) =− qe

8πε0d

(
1
d

+
ω2Rγ2

c2

)
γωR

c2




0
0
1


+O(d0) .

As viewed in Fig. 8.1, this is perpendicular to the page. Now according to (8.2),

vB(t) = ω(R+d)



−sinωt
cosωt

0


 ,

and we soon find

FA
mag(on B) =− e2

4d2
γω2R2

c2




cosωt
sinωt

0


− e2

4c2d
ω2Rγ3




cosωt
sinωt

0


+O(d0)

(8.63)

having made the usual definition e2 := qe/4πε0.
The magnetic field at A due to B is given by

BB(at A) =
rBA
+ ×EB(at A)

crBA
+

, (8.64)

where EB(at A) is given by (8.57), and the magnetic force of B on A is then

FB
mag(on A) =

qe

2
vA(t)×BB(at A) . (8.65)

We have already calculated the unit retarded displacement vector rBA
+ /rBA

+ in (8.37)
on p. 145, and a short calculation gives

BB(at A) =
qeωγ

8πε0dc2

(
R
d

+1
)




0
0
1


+O(d0) .

Once again, as viewed in Fig. 8.1, this is perpendicular to the page. Now according
to (8.2),
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vA(t) = ωR



−sinωt
cosωt

0


 ,

and we soon find

FB
mag(on A) =

e2

4d2
γω2R2

c2




cosωt
sinωt

0


+

e2

4c2d
ω2Rγ




cosωt
sinωt

0


+O(d0) (8.66)

We can now write down the magnetic self-force, simply taking the sum of (8.63)
and (8.66) to obtain

Fself
mag =

e2

4c2d
ω2Rγ(1− γ2)




cosωt
sinωt

0


+O(d0) (8.67)

Note that the O(d−2) terms cancel. The fact that the O(d−1) terms do not cancel
because of the different powers of the γ factors looks odd, and more will be said
about that below.

8.7 Power Series Expansion of Total Self-Force
and Interpretation

We now obtain the power series expansion of the total self-force by simply adding
(8.59) and (8.67) to obtain

Fself =
e2

4c2d
ω2Rγ




cosωt
sinωt

0


+O(d0) (8.68)

If one is interested in renormalising the inertial mass of the system by absorbing this
leading order term into whatever else constitutes its inertia, there are several features
about this that look helpful. The first is that it is radially outward, directly opposing
the acceleration of either A or B. Secondly, it is proportional to the acceleration
ω2R of A. And finally, we recover the same factor of e2/4c2d that seems to tag
along with this system when its velocity is perpendicular to its axis [compare with
the result (6.50) on p. 110].

Another crucial point about (8.68) is that the factor of γ is just right to be able to
absorb this contribution into the inertial mass. The point is that, when the velocity
is perpendicular to the acceleration, as in this case, we have
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d
dt

(m0γv) = m0γ
dv
dt

.

Finally, it is intriguing to note that the total force of A on B contains no O(d−1)
term:

FA
total(on B) =

e2

4d2γ




cosωt
sinωt

0


+O(d0) (8.69)

while the total force of B on A is

FB
total(on A) =− e2

4d2γ




cosωt
sinωt

0


+

e2

4c2d
ω2Rγ




cosωt
sinωt

0


+O(d0) (8.70)

We come back here to the problem discussed in Sect. 7.5, namely that A and B have
different motions. The acceleration ω2R appearing in (8.68) is the acceleration of
A, while B has acceleration ω2(R + d), and the γ factor appearing in all the above
formulas is γA := (1− v2

A/c2)−1/2, not γB := (1− v2
B/c2)−1/2. These things are not

very democratic! This issue also highlights the fact that we simply add up 3-forces
acting at different points of the system, with different motions. It highlights the
fact that we have not properly addressed the problem of the dynamics of spatially
extended objects in relativity theory.

To give some idea of the difference that can be made by the different γ factors,
let us expand γB in terms of γA and d. We have

γB(d) =
[

1− ω2(R+d)2

c2

]−1/2

, γA = γB(0) .

Now

γ(1)
B (d) :=

dγB

dd
=

ω2

c2 (R+d)γ3
B ,

whence

γ(1)
B (0) =

ω2R
c2 γ3

A ,

and we obtain the first order expansion

γB = γA +
ω2R
c2 γ3

Ad . (8.71)

Now the electric force of A on B in (8.48) can be rewritten
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FA
elec(on B) =

e2γB

4d2




cosωt
sinωt

0


+O(d0) ,

while the electric force of B on A in (8.58) has the form

FB
elec(on A) =−e2γA

4d2




cosωt
sinωt

0


+O(d0) .

The first force applies at B and the second at A.
One final point to remember is that all the four forces we have evaluated act to

O(d−2) and O(d−1) along the axis of the system. This means that they will have
stretching or compressing effects, and these have to be cleverly balanced by the
binding force so that the length remains the same.

We shall return to the issue of the dynamics of spatially extended bodies in relati-
vity theory, but let us first examine the last of the four scenarios, in which the system
rotates about a center, but with velocity always instantaneously along its axis, to a
good approximation. The γ factors and accelerations of A and B are equal in that
case, so one hopes for a similarly neat result.



Chapter 9
Self-Force for Longitudinal Rotational Motion

9.1 Setting the Scene

We consider the dumbbell charge system, consisting of two like charges qe/2 ro-
tating about a fixed center, in such a way that its axis always lies perpendicular to
a radial line from the center of rotation passing through its midpoint, as shown in
Fig. 9.1. As in the last chapter, both A and B have constant speeds. Although the
velocities of A and B are not always exactly parallel to the axis joining them, we do
not have to worry about changing FitzGerald contractions during the motion, as we
did in Chap. 7 (where the whole system was changing length all the time), because
each of A and B always has the same speed. So we can assume a fixed length for the
system, but there is a question about what the fixed length should be, because we
expect it to be contracted in some way as compared with its length when stationary
relative to some inertial frame. We shall nevertheless denote the length by d for the
moment, and return to the question of its value at the end of the calculation.

Once again the beauty of this scenario, as compared with those discussed in
Chaps. 6, 7, and 8, is that the acceleration of either A or B is now almost perpen-
dicular to the system axis (the line joining A and B), while the velocity is always
perpendicular to the acceleration for each particle. A priori, it is not at all obvious
that the electromagnetic self-force will lie perpendicular to the system axis, i.e.,
parallel to the acceleration.

We now formulate this final scenario. We take the position vectors of A and B at
time t to be

rA(t) =




Rcosωt
Rsinωt

0


 , rB(t) =




Rcos(ωt +φ)
Rsin(ωt +φ)

0


 , (9.1)

where R is thus the radial distance of A or B from the center of rotation, d is the
length of the system (the separation of A and B), which is constant in this scenario,
ω is the angular velocity of either A or B, and φ is a simple function of d satisfying

Lyle, S.N.: Self-Force for Longitudinal Rotational Motion. Lect. Notes Phys. 796, 157–177 (2010)
DOI 10.1007/978-3-642-04785-5 9 c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 9.1 Dumbbell charge system under rotational motion along its axis

d = 2Rsin
φ(d)

2
. (9.2)

The velocities are

vA(t) = ωR



−sinωt
cosωt

0


 , vB(t) = ωR



−sin(ωt +φ)
cos(ωt +φ)

0


 , (9.3)

whence A and B both move at speed ωR. They also have different accelerations

aA(t) =−ω2R




cosωt
sinωt

0


 , aB(t) =−ω2R




cos(ωt +φ)
sin(ωt +φ)

0


 , (9.4)

with the same magnitude, and both directed toward the center of rotation.
We shall need an expansion of φ(d) in powers of d. Differentiating both sides of

(9.2) with respect to d, we obtain

A

B vA

vB

d

x

y

ωt

R

φ

•

•
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1 = Rcos
φ
2

dφ
dd

,

whence

dφ
dd

=
2

(4R2−d2)1/2 . (9.5)

Then

d2φ
dd2 =

2d
(4R2−d2)3/2 . (9.6)

Hence we have the expansion

φ(d) =
d
R

+O(d3) (9.7)

9.2 Retarded Times and Retarded Displacement Vectors

As usual, we define retarded displacement vectors

rAB
+ (t) := rB(t)− rA(tA

+) =




Rcos(ωt +φ)−RcosωtA
+

Rsin(ωt +φ)−RsinωtA
+

0


 (9.8)

and

rBA
+ (t) := rA(t)− rB(tB

+) =




Rcosωt−Rcos(ωtB
+ +φ)

Rsinωt−Rsin(ωtB
+ +φ)

0


 , (9.9)

in which the retarded times tA
+ and tB

+ are defined by

rAB
+ (t)·rAB

+ (t) = c2(t− tA
+)2 , rBA

+ (t)·rBA
+ (t) = c2(t− tB

+)2 .

These just say that the lengths of rAB
+ (t) and rBA

+ (t) are the appropriate light travel
distances. A little algebra gets these relations into the form

c2(t− tA
+)2 = 2R2

{
1− cos

[
ω(t− tA

+)+φ
]}

(9.10)

and

c2(t− tB
+)2 = 2R2

{
1− cos

[
ω(t− tB

+)−φ
]}

(9.11)
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9.3 Power Series Expansion of Retarded Times

As usual, we treat tA
+ and tB

+ as functions of t and d, where t is the time at which we
are considering B or A, respectively, and seek expansions of the form

tA
+(t,d) = tA

+(t,0)+
∂ tA

+

∂d

∣∣∣∣
d=0

d +
1
2

∂ 2tA
+

∂d2

∣∣∣∣
d=0

d2 +O(d3) (9.12)

and

tB
+(t,d) = tB

+(t,0)+
∂ tB

+

∂d

∣∣∣∣
d=0

d +
1
2

∂ 2tB
+

∂d2

∣∣∣∣
d=0

d2 +O(d3) . (9.13)

Once again, tA
+(t,0) = t and tB

+(t,0) = t. We use the same method as in Sect. 8.3. In
contrast to the situation in Chap. 8, however, we shall need to expand both tA

+ and
tB
+, since the defining relations (9.10) and (9.11) are different here.

9.3.1 Expansion for tA
+

We thus define functions

f (d) := c2(t− tA
+)2 , g(d) := 2R2

{
1− cos

[
ω(t− tA

+)+φ
]}

,

expand each to O(d3), and equate coefficients of equal powers of d on either side of
the relation f = g [which is just (9.10)].

First define the notation

U :=
∂ tA

+

∂d

∣∣∣∣
d=0

, V :=
∂ 2tA

+

∂d2

∣∣∣∣
d=0

,

so that (9.12) becomes

tA
+ = t +Ud +

1
2

V d2 +O(d3) , t− tA
+ =−Ud− 1

2
V d2 +O(d3) . (9.14)

Further

∂ tA
+

∂d
= U +V d +O(d2) ,

∂ 2tA
+

∂d2 = V +O(d) . (9.15)

Now

f (d) = f (0)+ f (1)(0)d +
1
2

f (2)(0)d2 +
1
6

f (3)(0)d3 +O(d4) ,

where f (0) = 0, and
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f (1)(d) :=
d f
dd

=−2c2(t− tA
+)

∂ tA
+

∂d
,

f (2)(d) :=
d2 f
dd2 = 2c2

(
∂ tA

+

∂d

)2

−2c2(t− tA
+)

∂ 2tA
+

∂d2 ,

and

f (3)(d) :=
d3 f
dd3 = 6c2 ∂ tA

+

∂d
∂ 2tA

+

∂d2 −2c2(t− tA
+)

∂ 3tA
+

∂d3 .

Evaluating these at d = 0,

f (1)(0) = 0 , f (2)(0) = 2c2U2 , f (3)(0) = 6c2UV ,

whence

c2(t− tA
+)2 = c2U2d2 + c2UV d3 +O(d4) (9.16)

Likewise for g, we have

g(d) = g(0)+g(1)(0)d +
1
2

g(2)(0)d2 +
1
6

g(3)(0)d3 +O(d4) ,

where g(0) = 0. Setting ∆ := t− tA
+ , considered as a function of d, we have

g(1)(d) = 2R2 sin(ω∆+φ)
[
ω∆(1) +φ (1)

]
,

g(2)(d) = 2R2 sin(ω∆+φ)
[
ω∆(2) +φ (2)

]
+2R2 cos(ω∆+φ)

[
ω∆(1) +φ (1)

]2
,

and

g(3)(d) = 2R2 sin(ω∆+φ)
[
ω∆(3) +φ (3)

]
−2R2 sin(ω∆+φ)

[
ω∆(1) +φ (1)

]3

+6R2 cos(ω∆+φ)
[
ω∆(1) +φ (1)

][
ω∆(2) +φ (2)

]
,

where φ (1) is given by (9.5), φ (2) by (9.6), and

∆(1) =−∂ tA
+

∂ t
, ∆(2) =−∂ 2tA

+

∂ t2 .

Evaluating everything at d = 0, we have

g(1)(0) = 0 , g(2)(0) = 2(1−ωRU)2 , g(3)(0) =−6ωV R(1−ωRU) .
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We thus have the expansion

2R2
{

1− cos
[
ω(t− tA

+)+φ
]}

= (1−ωRU)2d2−ωV R(1−ωRU)d3 +O(d4)

(9.17)

Equating coefficients of equal powers of d in (9.16) and (9.17), we obtain
{

c2U2 = (1−ωRU)2 ,

c2UV =−ωV R(1−ωRU) ,

with solution

U :=
∂ tA

+

∂d

∣∣∣∣
d=0

=− 1
c−ωR

, V :=
∂ 2tA

+

∂d2

∣∣∣∣
d=0

= 0 (9.18)

We thus have the expansions

tA
+ = t− 1

c−ωR
d +O(d3) (9.19)

and

t− tA
+ =

1
c−ωR

d +O(d3) (9.20)

As expected, this is constant in time to this order, and should be to all orders, from
the symmetry of the situation.

9.3.2 Expansion for tB
+

Likewise we define functions

h(d) := c2(t− tB
+)2 , i(d) := 2R2

{
1− cos

[
ω(t− tB

+)−φ
]}

,

expand each to O(d3), and equate coefficients of equal powers of d on either side of
the relation h = i [which is just (9.11)].

As before, we define the notation

U :=
∂ tB

+

∂d

∣∣∣∣
d=0

, V :=
∂ 2tB

+

∂d2

∣∣∣∣
d=0

,

bearing in mind that this U and V are not the same as in the last section. Then (9.13)
becomes
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tB
+ = t +Ud +

1
2

V d2 +O(d3) , t− tB
+ =−Ud− 1

2
V d2 +O(d3) . (9.21)

Further

∂ tB
+

∂d
= U +V d +O(d2) ,

∂ 2tB
+

∂d2 = V +O(d) . (9.22)

Now the calculation for

h(d) = h(0)+h(1)(0)d +
1
2

h(2)(0)d2 +
1
6

h(3)(0)d3 +O(d4) ,

is exactly the same as the calculation for f in the last section, with the new symbols
U and V , and so

c2(t− tB
+)2 = c2U2d2 + c2UV d3 +O(d4) (9.23)

For i, we have

i(d) = i(0)+ i(1)(0)d +
1
2

i(2)(0)d2 +
1
6

i(3)(0)d3 +O(d4) ,

where i(0) = 0. Setting ∆ := t− tB
+, considered as a function of d (again this differs

from ∆ in the last section), we have

i(1)(d) = 2R2 sin(ω∆−φ)
[
ω∆(1)−φ (1)

]
,

i(2)(d) = 2R2 sin(ω∆−φ)
[
ω∆(2)−φ (2)

]
+2R2 cos(ω∆−φ)

[
ω∆(1)−φ (1)

]2
,

and

i(3)(d) = 2R2 sin(ω∆−φ)
[
ω∆(3)−φ (3)

]
−2R2 sin(ω∆−φ)

[
ω∆(1)−φ (1)

]3

+6R2 cos(ω∆−φ)
[
ω∆(1)−φ (1)

][
ω∆(2)−φ (2)

]
,

where φ (1) is given by (9.5), φ (2) by (9.6), and

∆(1) =−∂ tB
+

∂ t
, ∆(2) =−∂ 2tB

+

∂ t2 .

Evaluating everything at d = 0, we have

i(1)(0) = 0 , i(2)(0) = 2(1+ωRU)2 , i(3)(0) = 6ωV R(1+ωRU) .

We thus have the expansion
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2R2
{

1− cos
[
ω(t− tB

+)+φ
]}

= (1+ωRU)2d2 +ωV R(1+ωRU)d3 +O(d4)

(9.24)

Equating coefficients of equal powers of d in (9.23) and (9.24), we obtain
{

c2U2 = (1+ωRU)2 ,

c2UV = ωV R(1+ωRU) ,

with solution

U :=
∂ tB

+

∂d

∣∣∣∣
d=0

=− 1
c+ωR

, V :=
∂ 2tB

+

∂d2

∣∣∣∣
d=0

= 0 (9.25)

We thus have the expansions

tB
+ = t− 1

c+ωR
d +O(d3) (9.26)

and

t− tB
+ =

1
c+ωR

d +O(d3) (9.27)

As expected, this is constant in time to this order, and should be to all orders, from
the symmetry of the situation.

9.4 Power Series Expansion of Retarded Displacement Vectors

The next task to prepare for calculating the self-force is to expand the retarded dis-
placement vectors rAB

+ (t) and rBA
+ (t) defined by

rAB
+ (t)=




Rcos(ωt +φ)−RcosωtA
+

Rsin(ωt +φ)−RsinωtA
+

0


 , rBA

+ (t)=




Rcosωt−Rcos(ωtB
+ +φ)

Rsinωt−Rsin(ωtB
+ +φ)

0


 .

(9.28)

For this purpose, we shall require expansions of cosωtA
+ , sinωtA

+ , cos(ωt + φ),
sin(ωt +φ), cos(ωtB

+ +φ), and sin(ωtB
+ +φ) to O(d2).

Since φ = d/R+O(d3), we have

cos(ωt +φ) = cosωt−φ sinωt− 1
2

φ 2 cosωt +O(d3) ,
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and

sin(ωt +φ) = sinωt +φ cosωt− 1
2

φ 2 cosωt +O(d3) ,

whence

cos(ωt +φ) = cosωt− d
R

sinωt− d2

2R2 cosωt +O(d3) (9.29)

and

sin(ωt +φ) = sinωt +
d
R

cosωt− d2

2R2 sinωt +O(d3) (9.30)

Now define j(d) := cosωtA
+ , so that j(0) = cosωt and

j(1)(d) =−ω sinωtA
+

∂ tA
+

∂d
, j(2)(d) =−ω2 cosωtA

+

(
∂ tA

+

∂d

)2

−ω sinωtA
+

∂ 2tA
+

∂d2 ,

whence

j(1)(0) =
ω

c−ωR
sinωt , j(2)(0) =− ω2

(c−ωR)2 cosωt ,

using (9.18). Since

j(d) = j(0)+ j(1)(0)d +
1
2

j(2)(0)d2 +O(d3) ,

we thus find

cosωtA
+ = cosωt +

ωd
c−ωR

sinωt− ω2d2

2(c−ωR)2 cosωt +O(d3) (9.31)

Now define k(d) := sinωtA
+ , so that k(0) = sinωt and

k(1)(d) = ω cosωtA
+

∂ tA
+

∂d
, k(2)(d) =−ω2 sinωtA

+

(
∂ tA

+

∂d

)2

+ω cosωtA
+

∂ 2tA
+

∂d2 ,

whence

k(1)(0) =− ω
c−ωR

cosωt , k(2)(0) =− ω2

(c−ωR)2 sinωt ,

using (9.18). Since
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k(d) = k(0)+ k(1)(0)d +
1
2

k(2)(0)d2 +O(d3) ,

we thus find

sinωtA
+ = sinωt− ωd

c−ωR
cosωt− ω2d2

2(c−ωR)2 sinωt +O(d3) (9.32)

Now define l(d) := cos(ωtB
+ +φ), so that

l(1)(d) =−
[

ω
∂ tB

+

∂d
+φ (1)

]
sin(ωtB

+ +φ)

and

l(2)(d) =−
[

ω
∂ 2tB

+

∂d2 +φ (2)
]

sin(ωtB
+ +φ)−

[
ω

∂ tB
+

∂d
+φ (1)

]2

cos(ωtB
+ +φ) .

By (9.25) and the fact that φ (2)(0) = 0, we have

l(0) = cosωt , l(1)(0) =− c
R(c+ωR)

sinωt , l(2)(0) =− c2

R2(c+ωR)2 cosωt ,

and finally,

cos(ωtB
+ +φ) = cosωt− cd

R(c+ωR)
sinωt− c2d2

2R2(c+ωR)2 cosωt +O(d3)

(9.33)

Now define m(d) := sin(ωtB
+ +φ), so that

m(1)(d) =
[

ω
∂ tB

+

∂d
+φ (1)

]
cos(ωtB

+ +φ)

and

m(2)(d) =
[

ω
∂ 2tB

+

∂d2 +φ (2)
]

cos(ωtB
+ +φ)−

[
ω

∂ tB
+

∂d
+φ (1)

]2

sin(ωtB
+ +φ) .

Once again, by (9.25) and the fact that φ (2)(0) = 0, we have

m(0) = sinωt , m(1)(0) =
c

R(c+ωR)
cosωt , m(2)(0) =− c2

R2(c+ωR)2 sinωt ,

and finally,
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sin(ωtB
+ +φ) = sinωt +

cd
R(c+ωR)

cosωt− c2d2

2R2(c+ωR)2 sinωt +O(d3)

(9.34)

Now inserting (9.29) for cos(ωt +φ), (9.30) for sin(ωt +φ), (9.31) for cosωtA
+ , and

(9.32) for sinωtA
+ into the expression in (9.28) for the retarded displacement vector

from A to B, we soon obtain

rAB
+ =

cd
c−ωR



−sinωt
cosωt

0


+

(2ωR− c)c
2(c−ωR)2R

d2




cosωt
sinωt

0


+O(d3) (9.35)

Likewise, inserting (9.33) and (9.34) into the expression in (9.28) for the retarded
displacement vector from B to A, we obtain

rBA
+ =

cd
c+ωR




sinωt
−cosωt

0


+

c2d2

2(c+ωR)2R




cosωt
sinωt

0


+O(d3) (9.36)

We can cross-check for mistakes at this point, as in Sect. 8.4. We estimate the lengths
of these two vectors to O(d2) and check that we do indeed obtain |rAB

+ | = rAB
+ as

given by (9.20), viz.,

rAB
+ = c(t− tA

+) =
c

c−ωR
d +O(d3) , (9.37)

and |rBA
+ |= rBA

+ as given by (9.27), viz.,

rBA
+ = c(t− tB

+) =
c

c+ωR
d +O(d3) . (9.38)

Both rAB
+ and rBA

+ have the form

r = pd +qd2 +O(d3) ,

and it was shown in Sect. 8.4 that this implies

|r|= |p|d
(

1+
p ·q
p2 d

)
+O(d3) .

In the case of rAB
+ , we have
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p =
c

c−ωR



−sinωt
cosωt

0


 , q =

(2ωR− c)c
2(c−ωR)2R




cosωt
sinωt

0


 , (9.39)

so clearly,

|p|= c
c−ωR

, p ·q = 0 ,

whence we obtain confirmation that
∣∣rAB

+
∣∣ =

c
c−ωR

d +O(d3) ,

according to the expression (9.35), which agrees with (9.37). In the case of rBA
+ , we

have

p =
c

c+ωR




sinωt
−cosωt

0


 , q =

c2

2(c+ωR)2R




cosωt
sinωt

0


 , (9.40)

so clearly,

|p|= c
c+ωR

, p ·q = 0 ,

whence we obtain confirmation that
∣∣rBA

+
∣∣ =

c
c+ωR

d +O(d3) ,

according to the expression (9.36), which agrees with (9.38).
When we come to examine the magnetic fields, we shall require the unit retarded

displacement vectors rAB
+ /rAB

+ and rBA
+ /rBA

+ . As we saw in (8.35) on p. 145, when a
vector r has the form r = p+qd +O(d2), we have

r
|r| =

p
|p| +

1
|p|

(
q− p ·q

p2 p
)

d +O(d2) .

Now in both (9.39) and (9.40), we have p ·q = 0, so in both cases, the result reduces
to

r
|r| =

p+qd
|p| +O(d2) .

Applying this, we soon obtain
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rAB
+

rAB
+

=



−sinωt
cosωt

0


+

2ωR− c
2(c−ωR)R

d




cosωt
sinωt

0


+O(d2) (9.41)

and

rBA
+

rBA
+

=




sinωt
−cosωt

0


+

cd
2(c+ωR)R




cosωt
sinωt

0


+O(d2) (9.42)

9.5 Power Series Expansion of Electric Self-Force

We come now to the calculation of the electrical fields generated by these point
charges A and B in motion, obtaining only the leading order terms as usual. These
are the terms O(d−1) which diverge if we let d → 0.

9.5.1 Electric Force of A on B

We shall find the electric field EA(at B) at B due to A as given by

EA(at B) (9.43)

=
qe

8πε0

(
rAB
+ − rAB

+ vA
+

c

)[
1− (vA

+)2

c2

]
+

rAB
+

c2 ×
[(

rAB
+ − rAB

+ vA
+

c

)
× dvA

dt

∣∣∣∣
t=tA

+

]

(
rAB
+ − rAB

+ ·vA
+/c

)3 ,

then apply the usual rule to get the electric force

FA
elec(on B) =

qe

2
EA(at B) . (9.44)

Let us begin with the expansion of vA
+ = vA(tA

+), keeping only terms up to O(d).
Recalling from (9.3) on p. 158 that

vA(tA
+) = ωR



−sinωtA

+

cosωtA
+

0


 ,

and substituting in the expansions (9.31) and (9.32) for cosωtA
+ and sinωtA

+ , we
obtain
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vA
+ = ωR



−sinωt
cosωt

0


+

ω2Rd
c−ωR




cosωt
sinωt

0


d +O(d2) (9.45)

A short calculation now finds
(
vA

+
)2 = ω2R2 +O(d2) ,

whence

1− (vA
+)2

c2 = γ−2 +O(d2) (9.46)

Further efforts using (9.35) for rAB
+ , (9.37) for rAB

+ , and (9.45) for vA
+ lead to

rAB
+ − rAB

+ ·vA
+

c
= d +O(d3) (9.47)

and

rAB
+ − rAB

+ vA
+

c
= d



−sinωt
cosωt

0


− R2ω2 +(c−ωR)2

2R(c−ωR)2 d2




cosωt
sinωt

0


+O(d3)

(9.48)

We now have

(
rAB
+ − rAB

+ vA
+

c

)[
1− (vA

+)2

c2

]
=

d
γ2



−sinωt
cosωt

0




−
[

ω2Rγ2

2c2

(
1+

ωR
c

)2

+
1

2Rγ2

]
d2




cosωt
sinωt

0


+O(d3)

(9.49)

We still need to examine the term in aA(tA
+) in the numerator of (9.43). Now since

rAB
+ and rAB

+ − rAB
+ vA

+/c are each O(d), we only need the O(d0) term in aA(tA
+),

which is just

aA(tA
+) =−ω2R




cosωt
sinωt

0


+O(d) .
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In this scenario, we obtain something of O(d) for

(
rAB
+ − rAB

+ vA
+

c

)
× dvA

dt

∣∣∣∣
t=tA

+

= ω2Rd




0
0
1


+O(d2) ,

whence finally,

rAB
+

c2 ×
[(

rAB
+ − rAB

+ vA
+

c

)
× dvA

dt

∣∣∣∣
t=tA

+

]
=

ω2Rd2

c(c−ωR)




cosωt
sinωt

0


+O(d3) (9.50)

Adding (9.49) and (9.50) and dividing by d3, we thus find

EA(at B) =
qe

8πε0


 1

γ2d2



−sinωt
cosωt

0


+

(
ω2R
c2 − 1

2R

)



cosωt
sinωt

0


 1

d
+O(d0)




(9.51)

Then by (9.44), the electric force of A on B is

FA
elec(on B) =

e2

4


 1

γ2d2



−sinωt
cosωt

0


+

(
ω2R
c2 − 1

2R

)



cosωt
sinωt

0


 1

d
+O(d0)




(9.52)

having inserted e2 := q2
e/4πε0.

9.5.2 Electric Force of B on A

We shall find the electric field EB(at A) at A due to B as given by

EB(at A) (9.53)

=
qe

8πε0

(
rBA
+ − rBA

+ vB
+

c

)[
1− (vB

+)2

c2

]
+

rBA
+

c2 ×
[(

rBA
+ − rBA

+ vB
+

c

)
× dvB

dt

∣∣∣∣
t=tB

+

]

(
rBA
+ − rBA

+ ·vB
+/c

)3 ,

then apply the usual rule to get the electric force
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FB
elec(on A) =

qe

2
EB(at A) . (9.54)

Let us begin with the expansion of vB
+ = vB(tB

+), keeping only terms up to O(d).
Recalling from (9.3) on p. 158 that

vB(tB
+) = ωR



−sin(ωtB

+ +φ)
cos(ωtB

+ +φ)
0


 ,

and substituting in the expansions (9.33) and (9.34) for cosωtB
+ and sinωtB

+, we
obtain

vB
+ = ωR



−sinωt
cosωt

0


− ωcd

c+ωR




cosωt
sinωt

0


d +O(d2) (9.55)

A short calculation now finds
(
vB

+
)2 = ω2R2 +O(d2) ,

whence

1− (vB
+)2

c2 = γ−2 +O(d2) (9.56)

Further efforts using (9.36) for rBA
+ , (9.38) for rBA

+ , and (9.55) for vB
+ lead to

rBA
+ − rBA

+ ·vB
+

c
= d +O(d3) (9.57)

and

rBA
+ − rBA

+ vB
+

c
= d




sinωt
−cosωt

0


− c2(c+2ωR)

2Rc(c+ωR)2 d2




cosωt
sinωt

0


+O(d3) (9.58)

We now have
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(
rBA
+ − rBA

+ vB
+

c

)[
1− (vB

+)2

c2

]
=

d
γ2




sinωt
−cosωt

0




+
(c−ωR)(c+2ωR)

2Rc(c+ωR)
d2




cosωt
sinωt

0


+O(d3)

(9.59)

We still need to examine the term in aB(tB
+) in the numerator of (9.53). Now since

rBA
+ and rBA

+ − rBA
+ vB

+/c are each O(d), we only need the O(d0) term in aB(tB
+),

which is just

aB(tB
+) =−ω2R




cosωt
sinωt

0


+O(d) .

Once again, we obtain something of O(d) for

(
rBA
+ − rBA

+ vB
+

c

)
× dvB

dt

∣∣∣∣
t=tB

+

=−ω2Rd




0
0
1


+O(d2) ,

whence finally,

rBA
+

c2 ×
[(

rBA
+ − rBA

+ vB
+

c

)
× dvB

dt

∣∣∣∣
t=tB

+

]
=

ω2Rd2

c(c+ωR)




cosωt
sinωt

0


+O(d3) (9.60)

Adding (9.59) and (9.60) and dividing by d3, we thus find

EB(at A) =
qe

8πε0


 1

γ2d2




sinωt
−cosωt

0


+

1
2R




cosωt
sinωt

0


 1

d
+O(d0)


 (9.61)

Then by (9.54), the electric force of B on A is

FB
elec(on A) =

e2

4


 1

γ2d2




sinωt
−cosωt

0


+

1
2R




cosωt
sinωt

0


 1

d
+O(d0)


 (9.62)

having inserted e2 := q2
e/4πε0.
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9.5.3 Electric Self-Force

We now simply add together the results in (9.52) and (9.62) to obtain

Fself
elec =

e2

4c2d
ω2R




cosωt
sinωt

0


+O(d0) (9.63)

The first thing to note is that, as usual, the O(d−2) terms, which are basically
Coulomb terms, cancel one another. Secondly, it is worth comparing this with the
O(d−1) term of (7.53) on p. 132, for the scenario in which the system is accelera-
ting along a straight line parallel to its axis. Note that ω2R is the magnitude of the
acceleration of either A or B in the present case, and Fself

elec is directed radially out-
ward, i.e., in the direction opposite to the acceleration. However, in this case, Fself

elec
does not contain any factors involving γ . Regarding the comments in Sect. 7.5, we
note that the same γ factors are associated with A and B, so the disappearance of γ
from Fself

elec looks rather disappointing on the face of things. The problem is resolved
below.

Another difference with (7.53) is that it contains a factor of e/2c2d, whereas
(9.63) contains the factor e/4c2d. However, there are magnetic fields in the present
case and they are going to make a contribution.

9.6 Power Series Expansion of Magnetic Self-Force

According to the formula (2.62) given on p. 21 of Chap. 2, the magnetic field at B
due to A is given by

BA(at B) =
rAB
+ ×EA(at B)

crAB
+

, (9.64)

where EA(at B) is given by (9.51), and the magnetic force of A on B is then

FA
mag(on B) =

qe

2
vB(t)×BA(at B) . (9.65)

We have already calculated the unit retarded displacement vector rAB
+ /rAB

+ in (9.41)
on p. 169, and a short calculation gives

BA(at B) =
qeω

16πε0c2d




0
0
1


+O(d0) (9.66)
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Note that there is no O(d−2) term and also that this vector is perpendicular to the
page in the view of Fig. 9.1.

Now according to (9.3),

vB(t) = ωR



−sin(ωt +φ)
cos(ωt +φ)

0


 = ωR



−sinωt
cosωt

0


+O(d) ,

and this is accurate enough because there is no O(d−2) term in the magnetic field
(9.66). Finally, we obtain

FA
mag(on B) =

e2ω2R
8c2d




cosωt
sinωt

0


+O(d0) (9.67)

having made the usual definition e2 := qe/4πε0.
The magnetic field at A due to B is given by

BB(at A) =
rBA
+ ×EB(at A)

crBA
+

, (9.68)

where EB(at A) is given by (9.61), and the magnetic force of B on A is then

FB
mag(on A) =

qe

2
vA(t)×BB(at A) . (9.69)

We have already calculated the unit retarded displacement vector rBA
+ /rBA

+ in (9.42)
on p. 169, and a short calculation gives

BB(at A) =
qeω

16πε0c2d




0
0
1


+O(d0) (9.70)

which turns out to be identical with (9.66) to this order. Once again, as viewed in
Fig. 9.1, this is perpendicular to the page. Now according to (9.3),

vA(t) = ωR



−sinωt
cosωt

0


 ,

and we soon find
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FB
mag(on A) =

e2ω2R
8c2d




cosωt
sinωt

0


+O(d0) (9.71)

We can now write down the magnetic self-force, simply taking the sum of (9.67)
and (9.71) to obtain

Fself
mag =

e2

4c2d
ω2R




cosωt
sinωt

0


+O(d0) (9.72)

This is radially outward.

9.7 Power Series Expansion of Total Self-Force
and Interpretation

We now obtain the power series expansion of the total self-force by simply adding
(9.63) and (9.72) to obtain

Fself =
e2

2c2d
ω2R




cosωt
sinωt

0


+O(d0) (9.73)

If one is interested in renormalising the inertial mass of the system by absorbing this
leading order term into whatever else constitutes its inertia, there are several features
about this that look helpful. The first is that it is radially outward, directly opposing
the acceleration of either A or B. Secondly, it is proportional to the acceleration ω2R
of either particle. And finally, we recover the same factor of e2/2c2d that seems to
tag along with this system when its velocity is parallel to its axis. In other words, we
have the same contrast between (8.68) on p. 153 and (9.73) here as we did between
(7.54) and (7.55) on p. 133.

This confirms the interesting feature of the electromagnetic mass, as derived from
the self-force, that it depends which way the object is moving relative to its own
geometry. This is not something one normally expects of the inertial mass, and yet
it is a fact that, in bound systems that do not have spherical symmetry, the inertia
of the system will depend which way it moves relative to its own geometry. This
is what we have just confirmed for an electromagnetic binding force in a different
situation to the one described in Chaps. 6 and 7.

The only possibly disappointing thing about (9.73) is that there is no γ factor to
help us renormalise in the context of the relativistic Lorentz force law. However, we
can get one factor of γ back in by observing that the length d of the system will
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be contracted to approximately d/γ , where γ is the factor appropriate to either A or
B, as in the above calculation. Note that this is indeed an approximation, because
neither A nor B is ever moving exactly parallel to the system axis (the line joining
A and B). However, correction would only introduce a term of O(d), so to O(d−1),
we do have

Fself =
e2

2c2d
ω2Rγ




cosωt
sinωt

0


+O(d0) (9.74)

Interestingly, apart from the factor of 2, this is now identical with (8.68) for the third
scenario, and the γ factor is perfect for renormalisation purposes.

Should this factor of γ be included? The answer is affirmative. We are trying
to consider what happens to a system that has length d when at rest in an inertial
frame. In Chap. 7, we assumed that the system had to continually adjust its length
as it accelerated along its axis, so logically, we do need to allow for a constant
contraction here, relative to whatever inertial frame we refer the rotational motion.

9.8 General Conclusion for the Four Scenarios

Each of the four scenarios we have described is characterised by the configuration
of three vectors, namely, the velocity and acceleration, and the vector specifying the
system axis. Even in the relativistic limit, when factors of γ are relevant, it seems that
the magnitude of the self-force-derived electromagnetic mass (SFDM) is determined
by the relative orientation of the velocity and axis vectors (e2/2c2d when they are
parallel and e2/4c2d when they are perpendicular), while the direction of the O(d−1)
term in the self-force, which is the only divergent term if one lets the system size
tend to zero, always opposes the acceleration vector.

It is a very easy matter to see that, if we replace the like charges qe/2 at A
and qe/2 at B by unlike charges qe/2 at A and −qe/2 at B, the electromagnetic
self-forces switch sign in each case, to actually assist the acceleration. This is no
surprise. In physics, it is well known that the negative binding energy of a bound
particle contributes negatively to the inertial mass. The mass renormalisations are
all negative then.



Chapter 10
Summary of Results

Let us take stock of the all the results obtained in the preceding chapters, regarding
both the spherical charge shell and the charge dumbbell. Table 10.1 shows the cal-
culated values of the electromagnetic mass for these models in the various situations
considered. It is interesting that one has to make a distinction between longitudinal
and transverse motion for the charge dumbbell. Longitudinal motion refers to the
fact that the velocity is along the system axis, while transverse motion implies that
the velocity is perpendicular to the system axis.

But it is also interesting that the direction of acceleration relative to the system
axis is irrelevant, so that one can group the result of Chap. 6 for transverse linear
acceleration with the result of Chap. 8 for transverse rotational motion. The accele-
ration is perpendicular to the system axis in the first, and along it in the second, but
the velocity is perpendicular to the system axis in both. Likewise, we can group the
result of Chap. 7 for axial linear acceleration with the result of Chap. 9 for longi-
tudinal rotational motion. The acceleration is along the system axis in the first, and
perpendicular to it in the second, but the velocity is along the system axis in both.

We can conclude that the contribution to the EM mass from a spatial charge struc-
ture may depend on the direction of the velocity relative to the spatial orientation
of that structure. One must wonder what would happen to this result when quantum
theoretical models are made.

Another point is that, in all four cases where we have calculated the self-force
on the charge dumbbell, the highest order term, going as 1/d, is always opposite
in direction to the imposed acceleration, and hence contributes to the inertia of the
system. Given the complexity of the calculations with Maxwell’s theory in order to
arrive at such a clear and consistent result, this must be telling us something. It must
be possible to get a completely general result of this kind for abitrary motion.

But in a sense, we do have such a result, although the method used to obtain it is
very different, and in fact less explicit. For this is precisely the result which allows
classical mass renormalisation when we take the point particle limit. This is what
Dirac showed in [3], a modern version of which can be found in [8]. Classical mass
renormalisation is possible precisely because the divergent term arising for a point
particle has the right form to be absorbed into another term in the equation of motion

Lyle, S.N.: Summary of Results. Lect. Notes Phys. 796, 179–181 (2010)
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Table 10.1 Results for the electromagnetic mass in various scenarios. mSFDM
EM is the self-force-

derived EM mass, mMDM
EM the momentum-derived mass, and mEDM

EM the energy-derived mass. These
are rest mass values, i.e., the relativistic γ factor has not been included

Model mSFDM
EM mMDM

EM mEDM
EM

Spherical shell (radius a)
2
3

e2

ac2
2
3

e2

ac2
1
2

e2

ac2

Charge dumbbell (length d)
e2

2c2d
e2

2c2d
e2

4c2d
in longitudinal motion

Charge dumbbell (length d)
e2

4c2d
e2

4c2d
e2

4c2d
in transverse motion

and then forgotten. But it is because we get the right form for the self-force in the
above calculations that we can consider them to contribute to inertia. These are two
facets of the same result.

Moreover, as we have noted in the results of Chaps. 6–9, the leading term in
our self-force always has exactly the right form relativistically speaking, since it
contains the appropriate power of γ in every case. When the velocity and acce-
leration of the system are parallel, we require a factor of γ3, and when they are
orthogonal, we require a factor of γ .

The connection between the fact that EM self-forces contribute to inertia and the
possibility of mass renormalisation for EM effects looks interesting when one consi-
ders self-forces due to other fundamental forces, i.e., the weak and strong force, or
any other forces operating on smaller length scales not yet investigated. We now
know that all gauge theories are renormalisable [34]. Perhaps this means that (the
leading contributions to) self-forces due to the weak and strong forces, presently
modelled by gauge theories, must inevitably have the right form to contribute to
inertia.

The conjecture is therefore that any particle made up of sub-particles that are
themselves sources for some gauge field will exert an inertial self-force on itself
when accelerated (where ‘inertial’ just means ‘aligned with the acceleration’). If
such a result is true, it should be possible to obtain some general theorem rather
simply. Since the weak and strong forces have no classical model, one would have
to make a quantum theoretical version of the self-force idea, and use the general
arguments that show that gauge field theories are always renormalisable.

Another crucial result here is the explanation of EM radiation effects through the
second term in the self-force, something we only demonstrated for transverse linear
acceleration of our system (see Chap. 6). By the second term in the self-force, we
mean the one that is actually independent of the system dimensions, i.e., order d0

for the charge dumbbell. This helpful piece of understanding for the classical theory
is lost in point particle models. When we move to quantum theory, however, we do
not need it any more. Quantum theory deals with radiation in a quite different way.
In fact, a much more abstract way, with Hilbert space vectors and operators acting
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on them. The whole particle ontology is up in the air in quantum theory (but not in
the extremely interesting and convincing theory of Bohmian mechanics [35]).

Another key point about the results of all the calculations with the charge dumb-
bell is the change of sign that occurs when the two point charges (or small spherical
charge shells) at the ends of the dumbbell have opposite charges. In this case, the
highest order contribution to the self-force from the d level structure actually helps
any imposed acceleration, i.e., reduces the inertia of the system. Likewise, the mo-
mentum in the EM fields is reduced by this structure level. This concords perfectly
with the adage from special relativity that binding energy should be added in to the
inertial mass of any bound system. The difference here is that we have an explana-
tion for what usually comes down to us as a principle today, an idea exposed more
carefully in Sect. 13.1.

There is one other important and striking result in Table 10.1. For two of the sce-
narios, viz., linear acceleration of the spherical charge shell and longitudinal motion
of the charge dumbbell, there is a discrepancy between the self-force-derived and
momentum-derived EM masses on the one hand, and the energy-derived EM mass
on the other. This is what we need to investigate in the next chapter. The answer,
as we shall see, lies in the binding forces. The third line in the above table, which
shows that there is no discrepancy for transverse motion of the charge dumbbell,
will confirm our explanation.



Chapter 11
Reconciling Energy- and Momentum-Derived
EM Masses

The discrepancy between the energy- and momentum-derived EM masses first dis-
cussed for the spherical charge shell in Sect. 3.3, and then rediscovered for the
charge dumbbell in the preceding chapters, has led to a considerable debate in the
literature. We shall concentrate on four papers:

• First Rohrlich’s [21], in which he redefines the four-momentum of the EM fields
around a spherical charge shell in order to make it into a four-vector, transforming
by a Lorentz transformation under change of inertial frame.

• We then discuss Boyer’s challenge to this [23], in which he criticises what is
effectively an ad hoc redefinition of the energy and momentum density in the
EM fields, and in doing so, brings in the role of the binding forces in the charge
shell, which ensure Lorentz covariance of the theory without the need for ad hoc
adjustments to definitions.

• Rohrlich’s attempted reply [22] to Boyer’s paper is examined in order to demons-
trate just how arbitrary Rohrlich’s redefinition actually is.

• Along the way, we also consider a more recent paper by Moylan [24], which
supports the Rohrlich redefinition, and at the same time illustrates the risks of
neat mathematical accounts replacing real physical understanding.

11.1 Energy and Momentum in the Electron EM Fields

This section is inspired by [21], but follows its own path to expose the origin of the
discrepancy. Rohrlich deals with a spherical charge shell of radius a, but his solution
to the problem, as made explicit in [24], is to patch things up with an ad hoc change
in the definition of the field energy and momentum, rather than to take the finite
electron as a real possibility in which binding forces must be taken into account.
Rohrlich was approaching the problem from the angle of quantum electrodynamics
where such a redefinition is part and parcel of the usual process of renormalisation.

So let us also consider the spherical charge shell of radius a, and review the way
we have found the energy and momentum in the EM fields from a more global stand-

Lyle, S.N.: Reconciling Energy- and Momentum-Derived EM Masses. Lect. Notes Phys. 796,
183–262 (2010)
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point. On the basis of the discussion in Sect. 2.4, we have been using the following
formulas for the energy W and momentum pk of the fields surrounding an electron
moving at constant velocity:

W =
∫

ud3x , pk =
1
c2

∫
Skd3x , (11.1)

where the Latin index runs over {1,2,3}. These can be written in the form

W =−
∫

T 00d3x , pk =−1
c

∫
T 0kd3x . (11.2)

As we know, when the electron has zero velocity, so that the field is just the Coulomb
field, this leads to

W =
e2

2a
, p = 0 , (11.3)

for an electron which is a spherical shell of charge (with zero field inside). The
electromagnetic mass has to be defined as

mEDM
EM :=

e2

2ac2 . (11.4)

If the whole setup here were relativistically covariant, we know what we should
find when the electron is in uniform motion at speed v along the x axis. We merely
Lorentz boost the result in (11.3). Then we should have

W ′ = γmEDM
EM c2 , p′ = γmEDM

EM v . (11.5)

However, when we actually do our calculations using the second relation of (11.1),
we obtain a factor of 4/3 in the momentum [see, for example, (3.27) on p. 40],
whence there must have been something that was not relativistically covariant in
our formula (11.1).

So clearly the formulas in (11.2) are not relativistically covariant. Rohrlich as-
serts [21] that the unique covariant version of (11.2) is

pµ =
(

1
c

W,p
)

=−1
c

∫
T µν dσν , (11.6)

where dσν is a covector-valued measure on the spacelike hypersurface in which we
consider the electron charge to be distributed from our frame of reference, relative
to which the electron is moving. We shall need to think carefully about the measure.
We are told that we can always write it in the form

dσν = nν dσ , (11.7)
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where nν is a covector field and dσ is an invariant measure. However, there seems
to be a problem with the ‘invariant’ measure, discussed further below, and the pic-
ture described here would appear to miss a key point when it claims that (11.6) is
manifestly covariant. These issues will be the subject of the present chapter.

For the moment, note that in the stationary frame,

nµ = (1,0,0,0) , (11.8)

in order to obtain (11.2). Under the Lorentz boost, this becomes

nµ = vµ/c = γ(1,−v/c) , where v =
dr
dt

. (11.9)

In other words, apart from the factor of c, nµ has to be the 4-velocity, which is
constant over the spacetime.

As an aside, note here that we are integrating a vector-valued 3-form over a three-
dimensional hypersurface to obtain a vector field. This is not so easy to achieve in
general relativity. If it is possible here, it is because our transformations (the Lorentz
transformations) are limited to transformations that are linear, i.e., constant over the
whole spacetime. This will also be discussed later (see Sect. 11.2.2).

Let us now examine Rohrlich’s proposed formulas for the field energy and mo-
mentum when the electron is moving with constant 4-velocity vµ . According to
(11.6),

pµ =− 1
c2

∫
T µν vν dσ , (11.10)

whence

W = cp0 = −1
c

∫
T 0ν vν dσ

= γ
∫

udσ − γ
c2

∫
S ·vdσ , (11.11)

and

pk =− 1
c2

∫
T kν vν dσ =− 1

c2

∫
T k0v0dσ − 1

c2

∫
T k jv jdσ , (11.12)

whence

p =
γ
c2

∫
Sdσ +

γ
c2

∫
T·vdσ , (11.13)

where T is defined by (2.34) on p. 12. This differs from Rohrlich’s expressions by
some factors of c, so let us check the dimensions.

Note from (2.33) that our energy–momentum tensor is dimensionally homoge-
neous, i.e., all components have dimensions of [ε0][E2], since [E] = [cB]. This has
to be the case for the definition (11.10) to be physically possible, because vµ is
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dimensionally homogeneous. We also know that ε0E2 has dimensions of an energy
density, viz., ML−1T−2, hence [u] = ML−1T−2. The vector S/c has the same dimen-
sions as u, so [S] = MT−3, whence it is S/c2 that has the dimensions of a momentum
density. The first term in (11.11) has dimensions of energy and the second term has
dimensions

T2

L2 MT−3 L
T

L3 = ML2T−2 ,

the dimensions of energy again. Likewise, the components of the 3× 3 matrix T
have dimensions of energy density and we can soon check that the two terms of
(11.13) have the same dimensions.

There do remain two important questions: what is the ‘invariant’ measure and
what spacelike hypersurface do we integrate over? It may seem odd to ask the se-
cond question here. The spacelike hypersurface must be the hyperplane of simulta-
neity (HOS) of the observer who sees the charge shell as moving. The reader should
be warned, however, that the two papers [21,22] are not clear at all about this issue.
For example, in [21], Rohrlich suggests that the problems are caused by the surface
of the shell appearing to be ellipsoidal for a relatively moving observer, then states
the related but irrelevant fact that the worldline of its center is not relativistically
orthogonal to the HOS of that observer, claiming that Lorentz covariance requires
this orthogonality. Elsewhere [22], he appears to claim that, with his redefinition,
one is in fact always integrating over a HOS in the rest frame of the shell.

Worse, regarding the measure, the two papers [21] and [22] seem to contradict
one another. The first would have it that γdσ = d3x, which would appear to be unte-
nable, while the second seems to revert to the more likely dσ = γd3x. The level of
vagueness is such, however, that the author’s real intentions remain open to discus-
sion.

Let us suppose for a moment that we can put γdσ = d3x, as claimed by Rohrlich
in [21], without justification. Then according to this theory, the correct formulas for
the energy and momentum in the fields are

W = cp0 =
∫

ud3x− 1
c2

∫
S ·vd3x , (11.14)

and

p =
1
c2

∫
Sd3x+

1
c2

∫
T·vd3x , (11.15)

where the integration is taken over a spacelike hypersurface t = constant for the
observer who sees the electron as moving. Naturally, this observer integrates over
the region of that hypersurface outside the ellipsoid occupied by the charge. Each
formula includes an extra term compared with (11.1).

In the non-relativistic limit v ¿ c (γ ≈ 1), it turns out that the second term in
(11.14) can be neglected so that this calculation would have worked out correctly if
we had done it. However, the second term in (11.15) makes a significant contribution
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to the momentum calculations, even in the non-relativistic limit. In any case, it is
immediately obvious that

W = cp0 6=
∫

ud3x , (11.16)

and also

p 6= 1
c2

∫
Sd3x , (11.17)

where d3x is the usual volume measure on a spacelike hypersurface t = constant for
the observer who sees the electron as moving. In this view the formulas we proposed
in (11.1) are not correct precisely because the field energy and momentum have to
be calculated by integrating a second rank tensor. This was a mistake that arose
purely through not observing the rules of relativistic covariance.

In his paper [21], Rohrlich goes on to show that, in the non-relativistic approxi-
mation v¿ c,

1
c2

∫
ε0T·vd3x =− e2v

6ac2 =−1
3

mEDM
EM v , (11.18)

and since we know that

1
c2

∫
Sd3x =

4
3

mEDM
EM v ,

the final result is the desired

p = mEDM
EM v .

Naturally, the final four-momentum pµ is the right Lorentz transformation of the
one in (11.3), if Rohrlich’s construction via (11.6) really is Lorentz covariant.

Rohrlich’s Correction for the Spherical Electron

For the record, let us include this step. For nonrelativistic motion v¿ c, we have

E≈ e
r
r3 , B≈ v×E

c2 . (11.19)

This is the usual approximation to the full Lienard–Wiechert expression for the
fields due to a moving spherically symmetric charge.

Let us first check that the correction to p0 is negligible. We have
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S = ε0c2E×B

= ε0c2e
r
r3×

e
c2

(
v× r

r3

)

=
ε0e2

r6 r×(v× r)

=
ε0e2

r6

[
r2v− (r ·v)r

]
,

which is clearly O(v). The correction term to p0 is

1
c2

∫
S ·vd3x∼ v2

c2 , (11.20)

which we can neglect.
Now the correction to p is

1
c2

∫
T·vd3x =

ε0

c2

∫ [
E(E ·v)+ c2B(B ·v)− 1

2
v(E2 + c2B2)

]
d3x

≈ ε0

c2

∫ [
E(E ·v)− 1

2
vE2

]
d3x

=
ε0e2

c2

∫ ∞

r=a

[
r(r ·v)

r6 − v
2r4

]
d3x ,

where we dropped the term B(B ·v) because it is zero, and we have also dropped
the term in B2 because it is O(v2). We choose v = (v,0,0). We thus have

1
c2

∫
T·vd3x =

ε0e2v
c2

∫ ∞

r=a


xr

r6 −
1

2r4




1
0
0





d3x

=
ε0e2v

c2

∫ ∞

r=a

∫ π

θ=0

∫ 2π

φ=0


xr

r4 −
1

2r2




1
0
0





sinθ dθdφdr .

The second term is

−ε0e2v
c2

∫ ∞

r=a

∫ π

θ=0

∫ 2π

φ=0

sinθ
2r2




1
0
0


dθdφdr = −ε0e2v

2c2

∫ ∞

r=a

2π
r2

[
− cosθ

]π

0
dr

= −2πε0e2v
ac2 .

Concerning the other term, note that there is only an x component. The other two
components are zero by symmetry. The correction to p is thus in the direction of v.
We have to evaluate
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ε0e2v
c2

∫ ∞

r=a

x2

r6 d3x =
ε0e2v

c2

∫ ∞

r=a

∫ π

θ=0

∫ 2π

φ=0

x2

r4 sinθdθdφdr

=
ε0e2v

c2

∫ ∞

r=a

∫ π

θ=0

∫ 2π

φ=0

cos2 θ sinθ
r2 dθdφdr

=
ε0e2v
c2a

[
−1

3
cos3 θ

]π

0
2π

=
4πε0e2v

3c2a
.

Finally,

1
c2

∫
T·vd3x =−2πε0e2v

3c2a
. (11.21)

To obtain Rohrlich’s result, we put ε0 → 1/4π , which leads to

1
c2

∫
T·vd3x =− e2v

6c2a
(Rohrlich) . (11.22)

Rohrlich’s formula does therefore deliver the right correction, as he claims, at least
for the case of a spherical charge distribution and in the non-relativistic approxima-
tion.

One may also check that the right correction is obtained in the non-relativistic
approximation for the charge dumbbell, when it moves along its axis, for which
there was a discrepancy (see Sect. 5.2), and when it moves normally to its axis, for
which there was no discrepancy (see Sect. 5.3), and indeed Rohrlich’s prescription
leads to no adjustment.

This may look like a convincing argument in favour of this approach, but it should
be remembered that this kind of redefinition is made explicitly to render the result
covariant under Lorentz transformation. Indeed, we shall see a general proof later,
inspired by [22], that a prescription of this kind does deliver a Lorentz covariant
four-momentum for the EM fields around the charge shell moving at uniform ve-
locity, in the fully relativistic case where we do not assume v¿ c. But once again,
the reader should be warned: in the later paper [22], the ‘invariant’ measure would
appear to have become dσ = γd3x rather than γdσ = d3x, while the author claims
there to be integrating over a HOS in the rest frame of the shell, rather than a HOS
in a frame relative to which the shell is moving.

11.2 Measure and Integration Space

So we shall have more to say later about what is going on in the Rohrlich construc-
tion, but for the moment, let us just consider where a relation like γdσ = d3x might
come from. Why should this be so? We said earlier that dσ had to be an invariant
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measure. However, when we change inertial frame, the new dσ is a measure on
a different spacelike hypersurface in the Minkowski spacetime! To understand the
relation γdσ = d3x, we would have to carry out a Lorentz transformation of our
quantity on the right-hand side of (11.10) to see why this works.

However, we shall adopt a slightly different road, first of all to expose exactly
what leads to the discrepancy between energy-derived and momentum-derived EM
masses. To set the scene, let us reconsider what happens when we define charge and
4-momentum from a current density 4-vector and an energy–momentum tensor that
are conserved everywhere. This will remind us of what is usually done in a simpler
situation.

11.2.1 Charge for a Conserved Current Density

We only consider flat spacetime here. The point of considering a current density is
only to illustrate the kind of problem that is involved in defining something from a
conserved quantity.

Let Jµ be a conserved current density so that Jµ
,µ = 0. The usual definition of

the total charge is

Q :=
∫

x0=0
J0d3x , (11.23)

integrating over the whole of the hyperplane of simultaneity (HOS) x0 = 0 in our
chosen frame. Strictly speaking, there are several things to show here:

• Q is independent of time in the sense that it does not depend on the choice x0 = 0.
In other words, if we define

Q(t) :=
∫

x0=ct
J0d3x , (11.24)

for any value of t, it turns out that Q is actually independent of t.
• Q is a Lorentz scalar in the sense that, if we define

Q′ :=
∫

x′0=0
J′0d3x′ , (11.25)

in some other inertial frame, then it turns out that Q′ = Q.

In fact both of these results are proven using the fact that the charge is conserved.
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Conservation of Charge

No sophisticated techniques are required here. We note that

J0d3x = Jµ dσµ , where dσµ = (d3x,0,0,0) . (11.26)

In fact, we have written dσµ in the form nµ dσ , where dσ = d3x and nµ is a normal
form with respect to the hypersurface of integration. We shall achieve this in a more
sophisticated way shortly. Now we have, for t1 < t2,

Q(t2)−Q(t1) =
∫

x0=ct2
J0d3x−

∫

x0=ct1
J0d3x

=
∫

surface
Jµ dσµ

=
∫

volume
Jµ

,µ dτ

= 0 ,

where the surface is the surface of the whole slab of spacetime between x0 = ct1 and
x0 = ct2 and the volume is the volume of that same slab, with the usual measure on
Minkowski spacetime, viz., dτ = d4x. We have just applied Gauss’ theorem. This
does require us to make sure that we are in the conditions of Gauss’ theorem. We
also assume that the surface integrals at large spatial distances tend to zero.

We can show the same result in the form of a differentiation:

dQ
dt

= lim
δt→0

1
δt

[∫

x0=c(t+δt)
Jµ dσµ −

∫

x0=ct
Jµ dσµ

]

= lim
δt→0

1
δt

[∫

slab surface
Jµ dσµ

]

= lim
δt→0

1
δt

[∫

slab volume
Jµ

,µ dτ
]

= 0 .

Naturally, this is in essence the same as the first argument.
One sometimes sees

dQ
dt

=
∫

J0
,0d3x . (11.27)

This hides the fact that Q depends on time through the choice of spacelike hypersur-
face, which has not clearly become part of the differentiation process here. In actual
fact, the above statement means something like this:
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∂tQ = lim
δt→0

1
δt

[∫

t+δt
J0(t +δt,x)d3x−

∫

t
J0(t,x)d3x

]

= lim
δt→0

1
δt

∫

t

[
J0(t +δt,x)− J0(t,x)

]
d3x .

Presumably this is a valid step. The rest of the argument is more convincing. We
have J0

,0 = −Ji
,i, where i is summed over {1,2,3}. This is a divergence in the

spacelike hypersurface. We now use Gauss’ theorem in 3D to convert the other way,
not from a surface integral to a volume integral, but from a volume integral (in 3D)
to a surface integral at infinity, which we assume to be zero.

Lorentz Invariance of Charge

The approach here is essentially the same, but we can and will be a little more so-
phisticated, in preparation for the problem at hand. We now consider the difference

Q′−Q =
∫

x′0=0
J′0d3x′−

∫

x0=0
J0d3x . (11.28)

What we would like is to write this in the form

Q′−Q =
∫

primed HOS
J′µ dσ ′µ −

∫

unprimed HOS
Jµ dσµ , (11.29)

then say that J′µ dσ ′µ = Jµ dσµ because this is ‘manifestly’ a scalar. Thereafter, we
include integrations over surfaces at infinity to close our surface integrations around
two wedges of spacetime between the primed HOS and the unprimed HOS. These
convert to two 4-volume integrals over the interiors of the wedges using Gauss’
theorem, and the integrand is of course Jµ

,µ , which we assume at the outset to be
zero.

The crucial thing here is to see why we should have J′µ dσ ′µ = Jµ dσµ and unders-
tand how Gauss’ theorem works in Minkowski spacetime. The following discussion
is based on the kind of integration theory to be found in standard textbooks on ma-
nifold theory, such as [13, pp. 26–31] or [25, pp. 47–50].

What is the correct definition of our integrals? As explained in [25], we can
integrate a vector field Ja over a 3D submanifold S of spacetime by contracting it
with the canonical 4-form

ηabcd := |g|1/2εabcd = εabcd , (11.30)

where we have used the fact that the metric is gi j = ηi j with |g|= 1. Here εabcd is the
totally antisymmetric symbol with ε0123 = +1. We still have to define the integral

Q :=
∫

S
Jaηabcd . (11.31)
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As explained in [13], this involves parametrising S with some map

S : R3 ↪→ R4 with S(R3) = S . (11.32)

In the present case, this is very easy to do for the unprimed HOS x0 = 0. An appro-
priate map is

S(y1,y2,y3) = (0,y1,y2,y3) . (11.33)

For a different hyperplane of simultaneity x0 = ct1, we merely put

S(y1,y2,y3) = (ct1,y1,y2,y3) , (11.34)

whereupon the following argument is unaffected.
The next task is to pull back the 3-form on spacetime to a 3-form on the parame-

trisation space (R3 in this case). Now our 3-form on spacetime is

1
3!

Jaεabcddxb∧dxc∧dxd ,

with pullback

S∗
(

1
3!

Jaεabcddxb∧dxc∧dxd
)

=
1
3!

JaεabcdS∗(dxb)∧S∗(dxc)∧S∗(dxd) , (11.35)

using a well-known result concerning the pullback of an exterior product [13,
Chap. 2]. It is not difficult to show that

S∗(dx0) = 0 , S∗(dxi) = dyi , i = 1,2,3 . (11.36)

This is done by turning to the definitions of the pullback and tangent map on mani-
folds.

We are thus integrating

1
3!

JaεabcdS∗(dxb)∧S∗(dxc)∧S∗(dxd) =
1
3!

J0ε0i jkdyi∧dy j ∧dyk

= J0dy1∧dy2∧dy3 ,

whence

Q :=
∫

S
Jaηabcd =

∫

R3
J0d3x . (11.37)

All this merely shows that our original definition of Q is indeed the same as the
sophisticated integral definition! Note that we do indeed get something with the
form Jµ nµ dσ , where nµ is a normal form with respect to the surface in question, as
claimed. We can now fully justify the above proof that Q(t) is in fact independent
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ct ′

x′

x

ct

Worldtube
of charge

1

Fig. 11.1 Two coordinate systems for specifying how much charge there is

of t, because we now have the precise context in which Gauss’ theorem is valid, as
explained in [25].

At last we come to a more challenging case. We consider a Lorentz transforma-
tion to primed coordinates. In fact we shall consider a primed observer moving to
the left along the x axis at speed v. In the unprimed picture, the primed time axis
is sloping up to the left and the primed HOS x′0 = 0 is sloping down to the right,
below the unprimed HOS (see Fig. 11.1). This observer sees the unprimed system
moving off to the right. The problem is to get a more precise understanding of the
expression

Q′ =
∫

x′0=0
J′0d3x′ . (11.38)

For reference, we have




x0 = γ
(

x′0− v
c

x′1
)

,

x1 = γ
(

x′1− v
c

x′0
)

,





x′0 = γ
(

x0 +
v
c

x1
)

,

x′1 = γ
(

x1 +
v
c

x0
)

.
(11.39)

Let us view everything in the unprimed system. Then the primed HOS x′0 = 0 is
given by the equation x0 = −vx1/c. Let us denote it by R. We hope to integrate
over this hypersurface. This means seeking an injection

R : R3 ↪→ R4 with R(R3) = R . (11.40)

We define
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R : (y1,y2,y3) 7−→
(
−γv

c
y1,γy1,y2,y3

)
. (11.41)

Now what should we integrate? Let us try evaluating

Q′ :=
∫

R
J′aη ′abcd . (11.42)

By the perfect parallel with what was shown just now, we expect to find
∫

R
J′aη ′abcd =

∫

R
J′0d3x′ . (11.43)

Let us see how this works.
We have

η ′abcd = |η ′|1/2εabcd = εabcd . (11.44)

The volume element is unchanged under (proper, homogeneous) Lorentz transfor-
mations. Note that εabcd is itself invariant under these transformations. In fact, the
3-form we intend to integrate over R is just

1
3!

J′aε ′abcddx′b∧dx′c∧dx′d =
1
3!

Jaεabcddxb∧dxc∧dxd . (11.45)

This is very important, in fact. We are integrating the same 3-form as we integrated
over the unprimed HOS earlier. This has to be so if we are to have any chance of
applying Gauss’ theorem. It is also in this sense that J′µ dσ ′

µ = Jµ dσµ .
We now pull back the 3-form to R3 with the result

R∗
(

1
3!

Jaεabcddxb∧dxc∧dxd
)

=
1
3!

JaεabcdR∗(dxb)∧R∗(dxc)∧R∗(dxd) .

(11.46)

It is not difficult to show that

R∗(dx0) =−γv
c

dy1 , R∗(dx1) = γdy1 , (11.47)

R∗(dx2) = dy2 , R∗(dx3) = dy3 . (11.48)

We can now rewrite the pullback of the 3-form we hope to integrate. On the right-
hand side of (11.46), dx0 and dx1 both pull back to multiples of dy1, and the wedge
products of their pullbacks would therefore be zero. We drop terms in the sum with
{0,1} ⊂ {b,c,d}. The set {b,c,d}must therefore be either {0,2,3} or {1,2,3}. We
then sum over all permutations of its three elements. The first sum goes with J1ε1bcd ,
whilst the second goes with J0ε0bcd . The result is
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1
3!

JaεabcdR∗(dxb)∧R∗(dxc)∧R∗(dxd)

= γJ0dy1∧dy2∧dy3 +
γv
c

J1dy1∧dy2∧dy3

= γ
(

J0 +
v
c

J1
)

dy1∧dy2∧dy3 . (11.49)

We now have the integral in the form

Q′ :=
∫

R
J′aη ′abcd =

∫

R3
γ
(

J0 +
v
c

J1
)

d3y . (11.50)

In the integrand, the quantities J0 and J1 are

J0 = J0
(
−γv

c
y1,γy1,y2,y3

)
, J1 = J1

(
−γv

c
y1,γy1,y2,y3

)
. (11.51)

Now by comparison with (11.39), we note that

γ
(

J0 +
v
c

J1
)

= J′0 . (11.52)

It is in this sense that

Q′ :=
∫

R
J′0d3x′ , (11.53)

since we can equate d3y with d3x′ and we evaluate J′0 at points (x0,x1,x2,x3) with
x0 =−γvy1/c and x1 = γy1, which ensures that x′0 = 0.

What is the normal 1-form to the hypersurface x′0 = 0 (which we called R
above)? In the unprimed system it is

nµ = γ(1,v/c,0,0) . (11.54)

We have to check that n(e) = 0 for all vectors e lying in the hypersurface. This
is clear when e is in the space spanned by ∂/∂x2 and ∂/∂x3. If e is in the space
spanned by ∂/∂x0 and ∂/∂x1, it must be tangent to a curve

τ(s) =
(
−v

c
s,s,0,0

)
.

It thus has the form

e =
∂
∂ s

∣∣∣∣
τ
=−v

c
∂

∂x0 +
∂

∂x1 .

But then

n(e) = γ
(
−v

c
+

v
c

)
= 0 .
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This is the proof that n is the normal form to the hypersurface. Note that it is nor-
malised and nµ = uµ/c, where uµ = γ(c,−v,0,0) is the time axis of the primed
frame as viewed from the unprimed frame, i.e., the 4-velocity of the primed frame
as viewed from the unprimed frame. It is quite clear that this must be normal to the
hypersurface x′0 = 0.

We now observe that our integrand is

γ
(

J0 +
v
c

J1
)

= Jµ nµ . (11.55)

This too is obvious because the right-hand side is a scalar, hence equal to J′µ n′µ , and
n′µ = (1,0,0,0). Fortunately, everything fits together. We can write

Q′ =
∫

R
Jµ nµ dσ , (11.56)

where dσ refers to the measure d3x′ on R. It is important to note that the relevant
4-velocity is not the 4-velocity vµ of the unprimed frame, but the 4-velocity uµ of
the primed frame. After all, it is this that is normal to the hypersurface x′0 = 0 over
which the integration is carried out.

We shall soon extend this analysis to a 4-momentum vector defined from an
energy–momentum tensor and we shall find the same results. One should be a lit-
tle suspicious of the Rohrlich method, which seems to operate too naively when
it comes to changing the hypersurface of integration. It is not so clear why Rohr-
lich’s recipe works. However, it is crucial to know whether it is just a recipe or a
natural definition, because a recipe would be inadequate here. If we want a Lorentz
covariant 4-momentum for the fields outside a spherical charge distribution, we can
just Lorentz boost the simple 4-momentum obtained for the stationary distribution.
But this would prove nothing. However, Rohrlich’s method does deliver precisely
the same result as that tactic. Later we shall see exactly why it achieves its aim so
perfectly. On the other hand, using the above type of integration theory, we shall
demonstrate very clearly why the integrations do not, and should not, give a Lorentz
covariant result for the spherical electron.

Returning briefly to the training ground provided by the example in this section,
we can now prove that the charge as defined by (11.25) is Lorentz invariant. The
proof is:

Q′−Q =
∫

x′0=0
J′0d3x′−

∫

x0=0
J0d3x

=
∫

x′0=0
Jaηabcd −

∫

x0=0
Jaηabcd

=
∫

wedge surface
Jaηabcd

=
∫

wedge volume
Ja

,adτ

= 0 . (11.57)



198 11 Reconciling Energy- and Momentum-Derived EM Masses

It is the same proof as before, but it now clarifies the application of Gauss’ theorem
as described in [25].

It is worth making a last note here, concerning the case of a charge distribution
that is perfectly stationary in the unprimed frame. Hence,

Jµ = (cρ,0,0,0) . (11.58)

In a moving frame where the charge appears to be moving,

J′µ = γ(cρ,vρ) = ρv′µ , (11.59)

where v′µ is the 4-velocity of the charge in this frame. The new prescription for the
charge is

Q′ =
1
c

∫

t ′=0
J′0 d3x′ =

1
c

∫

t ′=0
γcρ d3x′ . (11.60)

Now let us visualise ρ as a variable function of (x1,x2,x3) for fixed x0 in the sense
that it is constant over some finite region and zero outside that region. Let us also
imagine that it is constant in the rest frame time at any point (x1,x2,x3). Recalling
the parametrisation (11.41) of the x′0 = 0 hypersurface, we can in this case write

1
c

∫

t ′=0
γcρ d3x′ =

∫

t=0
ρ d3x . (11.61)

There are special circumstances here for changing the integral over the primed hy-
persurface to one over the unprimed hypersurface without appealing to Gauss’ theo-
rem. We cannot normally do this. It was essential that ρ was constant in the way
described. The best we can do in our general case is

∫

x′0=0
J′aη ′abcd =

∫

R3
γ
[
J0

(
−γv

c
y1,γy1,y2,y3

)
+

v
c

J1
(
−γv

c
y1,γy1,y2,y3

)]
d3y

=
∫

R3

[
J0

(
−v

c
y1,y1,y2,y3

)
+

v
c

J1
(
−v

c
y1,y1,y2,y3

)]
d3y ,

where we have made a change of variable in the last step. It is quite clear why we
cannot proceed further: J0 and J1 can vary with the value of their first argument.
Only Gauss’ theorem can save us. However, when Jµ = (cρ,0,0,0) with ρ constant
in time, the last displayed formula does indeed reduce to

∫

x′0=0
J′aη ′abcd =

∫

R3
cρ(0,y1,y2,y3)d3y . (11.62)

The change of variable that removes the γ factor is now clear.
It is in fact the above situation that justifies Rohrlich’s definition in the end, in

the sense that his definition gives a Lorentz covariant quantity. Indeed, the energy–
momentum tensor in the rest frame of the electron is constant in the rest frame time.
However, we shall have more to say later about what Rohrlich’s definition really
achieves.
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We shall now apply the above integration theory to the definition

Pα =
∫

x0=0
T α0d3x , (11.63)

where T αβ is conserved everywhere, i.e.,

T αβ
,β = 0 . (11.64)

We would like to show something like
∫

x0=0
T α0d3x =

∫

x0=0
T abηbcde . (11.65)

The object T abηbcde is no longer a 3-form but can be considered as a vector-valued
3-form in the context of special relativity, where we make only linear coordinate
changes.

We have to be sure that Gauss’ theorem applies in the obvious way. In general
relativity or when using curvilinear coordinates in a flat spacetime, the connection
coefficients are not generally zero, and all partial derivatives with respect to coor-
dinates have to be replaced by covariant derivatives, so the situation becomes much
more complex. For example, it is the covariant derivative that comes into Gauss’
theorem and this would mess things up because T αβ

;β is not like Jβ
;β . Indeed, the

former contains two terms involving the connection coefficients and the latter only
one. However, it is only T αβ

,β that turns up here and we can envisage the following
ploy to establish the necessary results. (We only mention it here and then drop it, as
an unnecessary sophistication.)

We can contract with a one-form field of our choice W to apply the integration
results. For example, we can take W consecutively to be W (0) = dx0, then each of
W (i) = dxi, for i = 1,2,3. This gives back precisely the case studied above in four
cases:

J(0)b = W (0)
a T ab , J(i)b = W (i)

a T ab .

With a choice like these W (µ), we have

W (µ)
i, j = 0 , ∀i, j,µ .

Note in passing the extra complexity in a curved spacetime or when using curvi-
linear coordinates in a flat spacetime, where the simple coordinate derivative gets
replaced by a covariant derivative, and even the constancy of the components of a
one-form would not guarantee the constancy of the components of its covariant de-
rivative. In the present flat spacetime context, with Minkowski coordinates, we can

11.2.2 Four-Momentum for a Conserved Energy–Momentum
Tensor
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define the corresponding component of the 4-momentum for each vector field J(µ),
viz.,

Pµ =
∫

x0=0
J(µ)0d3x , (11.66)

and

J(µ)i
,i =

[
W (µ)

a T ai
]
,i

= W (µ)
a T ai

,i = 0 . (11.67)

Each ‘current vector’ is conserved.
From here on we shall not be concerned with this detail. The extra index on the

energy–momentum tensor will just tag along. However, it will be useful to reproduce
the whole argument of Sect. 11.2.1, in essentially the same form as for the 4-current
vector, just so that we can apply it to the case at hand. We thus start with

Pα =
∫

x0=0
T α0d3x , (11.68)

and show that it is the same as
∫

x0=0
T abηbcde , (11.69)

where x0 = 0 is our 3D submanifold and T abηbcde is a vector-valued 3-form.
As before, ηbcde = εbcde and we use the injection

S : R3 ↪→ R4 with S(R3) = S , (11.70)

where

S(y1,y2,y3) = (0,y1,y2,y3) , (11.71)

to parametrise the spacelike hypersurface S = {x0 = 0}. We then pull back the
vector-valued 3-form

1
3!

T abεbcdedxc∧dxd ∧dxe ,

ignoring the extra vector index a. The result is

S∗
(

1
3!

T abεbcdedxc∧dxd ∧dxe
)

=
1
3!

T abεbcdeS∗(dxc)∧S∗(dxd)∧S∗(dxe) ,

(11.72)

using a well-known result concerning the pullback of an exterior product [13,
Chap. 2]. As before, we show that

S∗(dx0) = 0 , S∗(dxi) = dyi , i = 1,2,3 . (11.73)
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We are thus integrating

1
3!

T abεbcdeS∗(dxc)∧S∗(dxd)∧S∗(dxe) =
1
3!

T a0ε0i jkdyi∧dy j ∧dyk

= T a0dy1∧dy2∧dy3 ,

This is the proof we need that

Pa =
∫

x0=constant
T abηbcde =

∫

x0=constant
T a0d3x . (11.74)

What happens when we choose different values for x0, say ct1 and ct2, where t1 < t2?
We have

Pa(t2)−Pa(t1) =
∫

x0=ct2
T abηbcde−

∫

x0=ct1
T abηbcde

=
∫

slab surface
T abηbcde

=
∫

slab volume
T ab

,b

= 0 , (11.75)

where the slab is the piece of spacetime between the two spatial hypersurfaces and
we have applied Gauss’ theorem to get line three.

The Case of the Spherical Electron

Let us view the spherical electron in its rest frame. We define

Pα(t1) =
∫

x0=ct1
outside electron

T α0d3x . (11.76)

This is independent of t1 because we are dealing with a static field! But we also
know that T ab is conserved outside the electron, so we should be able to apply
Gauss’ theorem in the spacetime region bounded by the two spacelike hypersurfaces
x0 = ct1 and x0 = ct2 and the electron worldtube W where it lies between them. The
latter is W = [ct1,ct2]×{r = a}, where a is the radius of the electron. We have to
stop the integration for r < a because the energy–momentum tensor is discontinuous
on the electron surface where the charge is accumulated. Indeed, the fields inside the
electron, and the energy–momentum tensor with them, are all zero.

The interesting thing here is to evaluate the integral over the electron worldtube.
By Gauss’ theorem, it has to be zero, since we know that P(t1) = P(t2) in this case,
so we hope to show that

∫

W
T abηbcde = 0 . (11.77)
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Recall that the energy–momentum tensor is

T ab = ε0



−1

2
E2 0

0 EE− 1
2

E2


 , (11.78)

where

E =
er
r3 , (11.79)

up to the usual problem of constants. (With our conventions, there should be a fac-
tor of 1/

√
4πε0 in the last relation, but as we hope to get zero, we shall deal in

proportionalities here.) Hence,

E2 =
e2

r4 , EE =
e2

r6




x2 xy xz

xy y2 yz

xz yz z2


 . (11.80)

The next problem is to parametrise the electron worldtube

[t1, t2]×{r = a}=
{
(ct,x,y,z) : t ∈ [t1, t2],x2 + y2 + z2 = a2} .

Heuristically, the normal form na for this region should have zero component n0
equal to zero and spatial part radial with respect to the origin. It is interesting to see
how this works out. We take the parametrisation

S : (y0,y1,y2) 7−→ (y0,asiny1 cosy2,asiny1 siny2,acosy1) , (11.81)

where

ct1 < y0 < ct2 , 0 < y1 < π , 0 < y2 < 2π (11.82)

is the cuboidal domain of integration in the y-space. We have to calculate the pull-
backs S∗dx0, S∗dx1, S∗dx2, and S∗dx3. It is intuitively obvious that we should get

S∗dx0 = dy0 , (11.83)

S∗dx1 = acosy1 cosy2 dy1−asiny1 siny2 dy2 , (11.84)

S∗dx2 = acosy1 siny2 dy1 +asiny1 cosy2 dy2 , (11.85)

S∗dx3 = −asiny1 dy1 , (11.86)

and it is not difficult to prove. We can now analyse
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1
3!

T abεbcdeS∗(dxc)∧S∗(dxd)∧S∗(dxe) (11.87)

= T a0 (
S∗dx1∧S∗dx2∧S∗dx3)+T a1 (

S∗dx2∧S∗dx0∧S∗dx3)

+T a2 (
S∗dx0∧S∗dx1∧S∗dx3)+T a3 (

S∗dx1∧S∗dx0∧S∗dx2) ,

where it is quite clear that

S∗dx1∧S∗dx2∧S∗dx3 = 0 , (11.88)

because we have a wedge product of three forms in the 2D subspace spanned by dy1

and dy2. The other pullbacks are

S∗dx2∧S∗dx0∧S∗dx3 =−a2 sin2 y1 cosy2 dy0∧dy1∧dy2 , (11.89)

S∗dx0∧S∗dx1∧S∗dx3 =−a2 sin2 y1 siny2 dy0∧dy1∧dy2 , (11.90)

and

S∗dx1∧S∗dx0∧S∗dx2 =−a2 cosy1 siny1 dy0∧dy1∧dy2 . (11.91)

Summing these terms, we have

1
3!

T abεbcdeS∗(dxc)∧S∗(dxd)∧S∗(dxe) (11.92)

=−a2 siny1Ta·



siny1 cosy2

siny1 siny2

cosy1


 dy0∧dy1∧dy2 ,

where, for each a = 0,1,2,3, the vector Ta is the vector

Ta = (T a1,T a2,T a3) ,

taking three components from each row of the energy–momentum tensor.
We can now express the integral in (11.77) in the form

∫

W
T abηbcde =

∫

cuboid in R3
T abnbdσ , (11.93)

where T ab is evaluated at (y0,asiny1 cosy2,asiny1 siny2,acosy1), the form nb is
given by

nb = (0,−siny1 cosy2,−siny1 siny2,−cosy1) , (11.94)

and

dσ = a2 siny1 dy0dy1dy2 . (11.95)
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The spatial part of the form n is indeed radial from the origin and the time com-
ponent of n is zero, as predicted on heuristic grounds. There is just a question about
the sign of the spatial part: should it point towards or away from the origin? Intui-
tively, it should point towards the origin in this case, because we integrate over the
region outside the electron. This has to be checked by referring to the orientation
of the submanifold. The measure dσ is precisely the measure we normally use on a
spherical surface of radius a.

We have to check that each component of (11.93) is zero. The zero component
is clearly zero because T0 = 0 for the energy–momentum tensor in (11.78). What
about the other three components? We have

T1 ∝ a2




sin2 y1 cos2 y2−1/2
sin2 y1 siny2 cosy2

siny1 cosy1 cosy2


 = xr− 1

2
r2




1
0
0


 . (11.96)

The 1-integral is an integral of something proportional to the scalar product of the
last thing with r, viz.,

xr · r− 1
2

r2




1
0
0


 ·r =

1
2

xr2 .

Note that there are other factors of r2 in the integrand, but r2 = a2 all over the
cuboid of integration specified in (11.82). Now the integral of x = asiny1 cosy2

over our cuboid of integration is obviously zero. The other two integrals in (11.93)
are shown to be zero in the same way.

The point of this was more an exercise in integration theory than anything else!
The fields here are static so it is clear that the 4-momentum of the fields has to
be constant with this definition. We are merely checking the application of Gauss’
theorem and seeing how to do an integration over the electron worldtube.

Lorentz Covariance of the Four-Momentum

Returning to the case of an energy–momentum tensor that is conserved everywhere,
we can now understand why the definition (11.63) on p. 199 gives a Lorentz cova-
riant quantity. The analysis is very similar to the one made for a conserved 4-current
in Sect. 11.2.1 [see (11.57) on p. 197].

We begin with

P′b =
∫

x′0=0
T ′b0 d3x′ =

∫

x′0=0
T ′bcη ′cde f , (11.97)

meaning that we integrate the vector-valued 3-form
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1
3!

T ′bcη ′cde f dx′d ∧dx′e∧dx′ f (11.98)

over the primed HOS. Hence, (L−1)a
bP′b is the integral over x′0 = 0 of the vector-

valued 3-form

1
3!

T acηcde f dxd ∧dxe∧dx f . (11.99)

We can conclude that

(L−1)a
bP′b−Pa =

∫
wedge
surface

T acηcde f

=
∫

wedge
volume

T ac
,cdτ

= 0 .

Note that we could also write the first line here in the form

(L−1)a
bP′b−Pa =

∫

x′0=0
T abdσb−

∫

x0=0
T abdσb . (11.100)

However, this involves showing that we can give this interpretation of our integrals
in terms of normal forms and it seems less direct.

The Case of the Spherical Electron

Let us see what happens to this analysis when we cannot integrate inside the spa-
cetime region R×{r < a} because the energy–momentum tensor is discontinuous
across the electron surface where the charge is supposed to be accumulated. We still
have that the energy–momentum tensor is conserved outside the electron. We can
therefore usefully apply Gauss’ theorem there, and the volume integral will be zero,
but we pick up an integral over the electron worldtube where it lies between the two
spacelike hypersurfaces x0 = 0 and x′0 = 0. It is precisely the value of this integral
that breaks the Lorentz covariance of our definitions in this case.

So the argument starts as before. We make the following picture in the unprimed
frame which is the electron rest frame (see Fig. 11.2). Relative to the x0 and x1 axes,
the x′0 axis slopes up to the left of the x0 axis and the x′1 axis slopes down to the right
below the x1 axis. Two wedges are formed between the x1 and x′1 axis (unprimed
and primed HOS). Our definitions of the 4-momentum in the primed and unprimed
frames require us to integrate something over the bits of these hypersurfaces that lie
outside the electron worldtube R×{r < a}. If we consider (L−1)a

bP′b−Pa, then
we are integrating the same thing, viz., T abηbcde, over the relevant surfaces. We can
close the wedges at infinity with impunity because the surface integrals there will
tend to zero. If we add in the integrals over the relevant parts of the electron world-
tube, we obtain the integral of T abηbcde over a closed surface and Gauss’ theorem
applies.
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ct ′

x′

x

ct

Electron
worldtube

a
−a

W

W

xinf

−xinf

1

Fig. 11.2 Two coordinate systems for specifying the four-momentum. The dotted lines enclose the
region of spacetime over which Gauss’ theorem is applied, and W is the part of that surface that
coincides with the surface of the electron worldtube, i.e., the part of the surface that leads to the
infamous discrepancy between energy-derived and momentum-derived EM masses for this system

The only problem then is to subtract off the surface integrals we added in. We
shall now evaluate this surface integral over part of the electron worldtube, i.e., we
shall evaluate

∫

W
T abηbcde , (11.101)

where W is the relevant portion of the surface of the electron worldtube. The inte-
grand is the vector-valued 3-form

1
3!

T abεbcdedxc∧dxd ∧dxe (11.102)

and we must parametrise the surface W by some injection of a region U ⊂R3 onto
W , viz.,

W : U ↪→ R4 , W (U ) = W . (11.103)

We then use W to pull back dx0, dx1, dx2, and dx3 and carry out a standard integra-
tion over U .

First of all, what points of spacetime are on the surface W ? In fact,
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W =
{

(x0,x1,x2,x3) : (x1)2 +(x2)2 +(x3)2 = a2 , x0 ∈
[

0,−vx1

c2

]
, x1 < 0

}

⋃{
(x0,x1,x2,x3) : (x1)2 +(x2)2 +(x3)2 = a2 , x0 ∈

[
−vx1

c2 ,0
]

, x1 > 0
}

.

We shall therefore define the map W by

W : (y0,y1,y2) 7−→ (y0,asiny1 cosy2,asiny1 siny2,acosy1) . (11.104)

The only remaining problem is to establish the domain of integration U .
This is no longer a cuboid in y-space because of the constraint

−va
c2 siny1 cosy2 < y0 < 0 , for cosy2 > 0 ,

0 < y0 <−va
c2 siny1 cosy2 , for cosy2 < 0 ,

whilst 0 ≤ y1 < π and 0 ≤ y2 < 2π . We picture the following region U in y-space
(see Fig. 11.3). It intersects the plane y2 = 0 in the region between the y1 axis and
the first hump of a negative sine curve going down to−va/c2. As we move along the
y2 axis, this sine hump decreases in depth to zero at y2 = π/2. As we move further
along the y2 axis, the sine hump grows positively to reach a peak of va/c2 at y2 = π
and then drops back down to zero at y2 = 3π/2 before falling down to its original
trace on the plane y2 = 2π , with a maximum depth of −va/c2. In other words, this
movement of the sine peak follows a cosinusoidal variation as we move along the
y2 axis.

There are three regions here: one with positive y0 and two with negative y0. The
latter are actually joined in spacetime. y1 and y2 correspond to the usual polar angles
θ and φ , respectively. Moving along the y2 axis corresponds to moving round the x3

axis from the x1 axis through the x2 axis when y2 = π/2 to the negative x1 axis when
y2 = π , the negative x2 axis when y2 = 3π/2 and finally back to the x1 axis when
y2 = 2π . Now y0 is negative in the zones 0 < y2 < π/2 and 3π/2 < y2 < 2π and
it is positive in the zone π/2 < y2 < 3π/2, i.e., it is negative between the negative
x2 axis and the positive x2 axis and positive between the positive x2 axis and the
negative x2 axis.

Let us carry out this integral for the spherical electron. We have the pullbacks in
(11.83) on p. 202, viz.,

W ∗dx0 = dy0 , (11.105)
W ∗dx1 = acosy1 cosy2 dy1−asiny1 siny2 dy2 , (11.106)
W ∗dx2 = acosy1 siny2 dy1 +asiny1 cosy2 dy2 , (11.107)
W ∗dx3 = −asiny1 dy1 , (11.108)

and the energy–momentum tensor on p. 202, viz.,
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y0

y1

y2

π/2

π

3π/2

2π

va/c2
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1

Fig. 11.3 Domain of integration in y space

T ab = ε0



−1

2
E2 0

0 EE− 1
2

E2


 , (11.109)

where

E =
er
r3 , (11.110)

up to a constant (in fact, we have have dropped a factor of 1/
√

4πε0), with

E2 =
e2

r4 , EE =
e2

r6




x2 xy xz
xy y2 yz
xz yz z2


 . (11.111)

It should not be forgotten that r = a all over the domain of integration. We can say
that

T ab =−ε0e2

2a4




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


+

ε0e2

a6

(
0 0
0 rr

)
, (11.112)

where
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rr =




x2 xy xz
xy y2 yz
xz yz z2


 . (11.113)

We have already worked out the pullback in (11.92) on p. 203:

1
3!

T abεbcdeW ∗(dxc)∧W ∗(dxd)∧W ∗(dxe) (11.114)

=−a2 siny1Ta·



siny1 cosy2

siny1 siny2

cosy1


 dy0∧dy1∧dy2 ,

where, for each a = 0,1,2,3, the vector Ta is the vector

Ta = (T a1,T a2,T a3) ,

taking three components from each row of the energy–momentum tensor. As before,
we have T0 = 0. This says that

∫

W
T 0bηbcde = 0 . (11.115)

For i = 1,2,3,

∫

W
T ibηbcde =

ε0e2

a6

∫

U
−asiny1(rr)·rdy0dy1dy2− ε0e2

2a4

∫

U
−asiny1rdy0dy1dy2

= −ε0e2

2a2

∫

U




sin2 y1 cosy2

sin2 y1 siny2

siny1 cosy1


 dy0dy1dy2 . (11.116)

There is a question of sign here, which depends on the orientation of the surface
in spacetime and the fact that we are using Gauss’ theorem outside the electron
worldtube rather than inside it.

We now write the integral as a sum for different ranges of the y2 variable. It is
important to note that, because the two spacelike hypersurfaces x0 = 0 and x′0 = 0
cross at the origin, there is a relative sign between the integral obtained for y2 ∈
[π/2,3π/2] and the integral obtained for y2 ∈ [0,π/2]

⋃
[3π/2,2π]. As regards the

overall sign, we shall just hope that it is right for the moment. We have

∫

W
T ibηbcde =

ε0e2

2a2

∫ π

0
dy1

(∫ π/2

0
dy2 +

∫ 2π

3π/2
dy2

)∫ 0

−(va/c2)siny1 cosy2
dy0 siny1r

+
ε0e2

2a2

∫ π

0
dy1

∫ 3π/2

π/2
dy2

∫ (va/c2)siny1 cosy2

0
dy0 siny1r . (11.117)

The y0 integrals are easy to do because the integrand is independent of y0. We thus
obtain



210 11 Reconciling Energy- and Momentum-Derived EM Masses

∫

W
T ibηbcde =

ε0e2

2a2

∫ π

0
dy1

(∫ π/2

0
dy2 +

∫ 2π

3π/2
dy2

)
va
c2 siny1 cosy2 siny1r

+
ε0e2

2a2

∫ π

0
dy1

∫ 3π/2

π/2
dy2 va

c2 siny1 cosy2 siny1r

=
ε0e2

2a2

∫ π

0
dy1

∫ 2π

0
dy2 va

c2 siny1 cosy2 siny1r . (11.118)

Let us evaluate

∫ 2π

0
dy2 siny1 cosy2 siny1r =




sin3 y1
∫ 2π

0
dy2 cos2 y2

sin3 y1
∫ 2π

0
dy2 cosy2 siny2

sin2 y1 cosy1
∫ 2π

0
dy2 cosy2




= π sin3 y1




1
0
0


 . (11.119)

Since it is straightforward to show that
∫ π

0
sin3 y1 dy1 =

4
3

, (11.120)

we can put everything together to show that

∫

W
T ibηbcde =

2ε0e2π
3ac2 v . (11.121)

Reinstating the factor of 1/
√

4πε0 that should come with every appearance of e, the
final result is

∫

W
T ibηbcde =± e2

6ac2 v . (11.122)

The choice of sign arises partly because we have dropped a sign in the definition of
Pa itself and partly because we have not checked the question of orientation of the
surface.

What is significant is that this result is precisely the discrepancy discovered by
Rohrlich in his equation (11.18), up to a sign. Of course, it had to be. We know
this is the discrepancy destroying Lorentz covariance in our definition of Pa. The
point about the above, somewhat lengthy exercise is to show this explicitly with
absolutely standard integration theory. The problem occurs precisely because the
purely electromagnetic energy–momentum tensor we are using is only conserved
outside the charge shell, and not actually on the shell, and this in turn happens
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because we have not included the binding forces and the energy–momentum tensor
that describes them.

Note that Rohrlich’s result (11.22) on p. 189, obtained in [21], is an approxi-
mation, whereas the calculation leading to (11.122) was exact in every way. The
above calculation used the rest frame energy–momentum tensor. Let us make the
connection between the two results absolutely clear. In the above discussion we be-
gan with the 4-momentum P′β as we would have worked it out in Chap. 5, in the
frame relative to which the electron has 4-velocity v′µ = γ(c,v). We then showed
that

(L−1)α
β P′β = Pα +

e2

6ac2 (0,v) , (11.123)

where L is the Lorentz transformation from the rest frame of the shell to a frame
in which it appears to be moving, and we take the positive sign for the correction
term here to get the agreement below. (We do not need to check that this is the
right sign, because we know from the general theory what adjustment we need to
get Lorentz covariance.) This result is exact. Rohrlich estimates in the primed frame
(the calculation described on pp. 187 ff.) and gets the same correction to the result
in the sense that he claims to evaluate the real La

bPb and finds

La
bPb = P′a− e2

6ac2 (0,v) .

Hence, he claims that

(L−1)a
bP′b = Pa +

e2

6ac2 (L−1)a
b(0,v) .

This is not exactly the same as (11.123), but it is the same within the approximation
v¿ c. We have, according to (11.39) on p. 194,

L−1 =




γ −γv/c 0 0
−γv/c γ 0 0

0 0 1 0
0 0 0 1


 , (11.124)

whence

L−1
(

0
v

)
=

(−γv2/c
γv

)
≈

(
0
v

)
, (11.125)

as required.
So it still remains to see exactly what is going on with Rohrlich’s succinct rede-

finition of the four-momentum in the fields, and we shall do that in Sect. 11.4. But
first, let us get a better understanding of why the binding forces must be taken into
account.
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11.3 Role of the Binding Forces

The present discussion is based on the article [23] by Boyer, entitled Classical Mo-
del of the Electron and the Definition of Electromagnetic Field Momentum. This pa-
per opposes the covariant extension advocated by Rohrlich, considered in Sect. 11.1.
In Boyer’s version, the usual calculation of the momentum in the fields is correct
and, although the Rohrlich formula leads to a Lorentz covariant definition, it has no
physical interpretation (see Sect. 11.4).

Boyer approaches the problem of the 4/3 factor by examining the assembly of a
charged spherical shell as seen in two different inertial frames. In fact, he imagines
the assembly of the classical model of the electron in terms of a thin spherical shell
of total mechanical mass m and charge e sent rushing inwards from spatial infinity
with the initial kinetic energy mc2(γ − 1) at spatial infinity equal to the final elec-
trostatic potential energy Uem = e2/2a. Since the shell is perfectly spherically sym-
metric, there is no radiation loss and all the initial kinetic energy at spatial infinity
is converted into electrostatic potential energy when the shell comes momentarily
to rest at radius a. Just at this instant when the spherical shell comes to rest, the
stabilising forces are applied. These forces prevent the reexpansion of the shell. The
external forces are applied simultaneously at zero velocity and hence transfer nei-
ther energy nor momentum to the spherical shell. We thus assemble our classical
electron as a thin shell of charge of energy

Utot = mc2 +
e2

2a

and zero momentum Ptot = 0. Note that in Boyer’s discussion the electron has a
‘mechanical mass’. In other words, there is no attempt to make a self-contained
theory of inertial mass.

Concerning the comment about radiation losses, one must consider the question
of the fields outside the collapsing shell. On the face of it, this seems to be a rather
complex problem, given the complexity of the source. However, we have Gauss’
theorem based on the Maxwell equation which relates ∇ ·E to the charge density.
It turns out that the field outside the sphere at any instant of time is just the static
Coulomb field due to a point charge at the sphere centre. Likewise the fields are all
identically zero inside the sphere. This is clearly an idealisation, just as the spherical
shell itself is an idealisation. However, it will be important later and we shall discuss
this in some detail.

The problem then will be to view the above assembly process from a primed
frame S′ moving with 3-velocity−v relative to the initial frame S, so that the charge
shell appears to be moving to the right with 3-velocity v (see Fig. 11.4). When
the shell has infinite radius, all points lie within it, so the fields are zero everyw-
here. All the particle energy and momentum comes from the ‘mechanical mass’.
The energy and momentum of this ‘mechanical mass’ transform as a Lorentz four-
vector. Hence, initially, the system momentum, which is all mechanical momentum,
is given by
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P′tot = P′mech(t
′→−∞) = vγUtot/c2 .

As time goes by, the electromagnetic fields increase from their initial zero values and
part of the mechanical momentum is converted into electromagnetic momentum.
The total momentum is conserved as long as there are no external forces on the
system.

In frame S, the stabilising forces are applied simultaneously. Consequently, the
net external force on the system is zero and there is no change in the momentum
of the system. Contrastingly, in the S′ frame, the external stabilising forces are ap-
plied, beginning at some time t ′s and continuing through some period which actually
depends on v. Indeed, they are applied at different times to different parts of the
spherical shell. Thus, from the moment (in the S′ frame) when the first force is ap-
plied and until the moment (in the S′ frame) when all the external forces have been
applied, there is a net external force on the shell, and hence a net momentum is
transferred to the shell. So we deduce that

vγUtot/c2 = P′tot = P′mech +P′em (t ′ < t ′s) , (11.126)

but after this time, the total momentum of the shell and fields is changed from the
value P′tot = vγUtot/c2 which prevailed before the external forces were applied.

The change in momentum ∆P′ of the charge shell as seen in the S′ frame is equal
to the net impulse I′ delivered by the external stabilising forces as seen in the S′
frame. The problem now is to compute I′.

11.3.1 Dynamics of a Collapsing Charged Spherical Shell

We shall say that the charge shell is at infinity at time t =−∞ in the unprimed frame
(in which the final assembly is motionless), and reaches its final radius a at time
t = 0. The binding forces are thus switched on at time t = 0. When we view this
from the primed frame, in which the final assembly has speed v along the positive
x axis, the binding forces will affect different parts of the shell at different primed
times.

We make the following picture (see Fig. 11.4). Draw the ct ′ and x′ axes at right
angles with the ct axis slanting off to the right from the origin and the x axis rotated
up slightly from the x′ axis. Draw the electron world tube with rear wall going
through the point (x,ct) = (−a,0) and front wall going through the point (x,ct) =
(a,0) and both walls parallel to the ct axis, slanting off to the right of the ct ′ axis.
We can imagine that the stabilising forces are applied at time t = 0 in the unprimed
frame. Then they appear to begin at the event whose primed coordinates correspond
to (−a,0) and end at the event whose primed coordinates correspond to (a,0). Using
the conversion

x′0 = γ
(

x0 +
v
c

x1
)

, x′1 = γ
(

x1 +
v
c

x0
)

,
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ct

x

x′

ct ′

ct ′ = γva/c

ct ′s = −γva/c

x = a

x = −a

Electron
worldtube

1

Fig. 11.4 Worldtube of the charge shell when viewed from a primed frame moving to the left along
the x axis at speed v

we find the correspondence

(−a,0)←→
(
−γa,−γv

c
a
)

, (a,0)←→
(

γa,
γv
c

a
)

. (11.127)

We introduce parameters θ and φ . We take the axis θ = 0 to be the x or x′ axis with
φ measured axially around it. These angles can be taken in the S frame, because this
is where we evaluate the force, before transforming to the S′ frame. We divide the
shell into rings of charge that are symmetrical around this axis, of area 2πa2dθ sinθ .
Since the surface charge density of the sphere is e/4πa2, the charge in the ring at θ
is

1
2

esinθ dθ . (11.128)

Note that, if we discussed rings of charge as viewed in the primed frame, we would
divide the shell into rings of charge that were symmetrical around the x′ axis, of area
2π(a2/γ)dθ sinθ . Since the surface charge density of the ellipsoid is eγ/4πa2, the
charge in the ring at θ would be the same as in (11.128).

Viewed from the S frame, at each x value between −a and a, we can say that a
force F(θ ,φ) is applied towards the spatial origin. In the S′ frame, this appears to
act from the time

t ′ =
γv
c2 x until the time

γv
c2 a .

We find the force on the ring in the S frame and Lorentz transform. This force,
summed over all the φ values, has resultant parallel to the x axis in space. Let us call
it
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F i =




0
F(θ)

0
0


 . (11.129)

The first component is zero because there is no motion in the unprimed frame. (Re-
call that 4-velocity and 4-force are orthogonal.)

How can we work out the force on the ring. One plausible argument is that the
rest of the shell acts like a point charge e at the spatial origin. If this were valid, the
x component of the force on the ring would be

F(θ) =− 1
2a2 esinθ dθ × e× cosθ =− e2

4a2 sin2θ dθ . (11.130)

The minus sign says that we are acting against the repulsion from the spatial origin
due to the Coulomb force. The Lorentz transformation to the primed frame is

F ′i =
(

γ γv/c
γv/c γ

)(
0

F(θ)

)
=

( γv
c

F(θ)

γF(θ)

)
. (11.131)

However, we are interested in F ′1/γ . This is because we need

dP′

dt ′
=

d
dt ′

(γm0u′) = f′ ,

where

F ′ = (γ f ′4,γf′) ,

using the obvious notation.
We can now integrate over all the rings making up the shell. The result is

∆P′ =− e2

4a2

∫ π

θ=0
sin2θ dθ

γv
c2 (a− x) . (11.132)

We are summing the forces multiplied by the times they act as measured in the
primed frame in order to get the impulse in the primed frame. (Note that the forces
act for ever more, but we only consider the time during which they appear to be
unbalanced in the primed frame, which ends at t ′ = γva/c2.) Since x = acosθ , the
result is therefore
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∆P′(incorrect) = − e2

4a2

∫ π

θ=0
sin2θ dθ

γva
c2 (1− cosθ)

=
e2γv
4ac2

∫ π

θ=0
2sinθ cos2 θ dθ

=
e2γv
2ac2

[
−1

3
cos3 θ

]π

0

=
e2γv
3ac2 . (11.133)

However, this is not correct. What we should obtain is

∆P′(correct) =
v

3c2 γUem =
e2γv
6ac2 , (11.134)

so we have a disagreement by a factor of 2. This can be traced to the fact that the
electromagnetic force density on the shell is actually

f µ
em =

(
0,

e
4πa2 δ (r−a)

er̂
2a2

)
. (11.135)

In (11.135), e/4πa2 is the surface charge density, but a factor of 1/2 has crept into
the 4-force. We need to see how this follows from the formula

E = θ(r−a)
er
r3 (11.136)

for the electrostatic field in the unprimed frame, where θ is the usual step function,
and we shall do this in Sect. 11.3.3.

Of course, the delicate part of the above argument is the idea that, when we consi-
der our ring of charge, the rest of the shell should act like a point charge at the origin.
We ought to prove this in some rigorous manner. We have the remarkable fact that
the fields are always zero inside the collapsing shell and that they instantaneously
go to the appropriate Coulomb value as the shell passes. But if we start thinking
about retarded times in this dynamic situation, it is not nearly so obvious that the
field acting on the ring at any given time should be the result of taking the whole
distribution as a point charge at the spatial origin.

11.3.2 EM Fields of a Collapsing Charged Spherical Shell

We know that the force density on the shell is given by (see Sect. 2.4)

f µ
em = ∂νΘ µν

em , (11.137)

where Θ µν
em comes from the electric field
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E = θ(r−a)
er
r3 , (11.138)

up to the usual factor of 1/
√

4πε0. To model this situation, we introduce the mo-
notonically decreasing function a(t) which gives the radius of the sphere at time t,
with a(0) = a and ȧ(0) = 0. Then we can propose that the electric field at time t is

E = θ
[
r−a(t)

]er
r3 . (11.139)

The magnetic field will be zero everywhere.
Let us check that Maxwell’s equations are satisfied! We have to check that

∇×E = 0 ,
∂E
∂ t

=−4πJ , ∇ ·E = 4πρ . (11.140)

Note that these differ in the obvious way from the version (2.1) of Maxwell’s equa-
tions, due to the different units for the charge. We need expressions for ρ and J. The
charge density at time t is

ρ =
e

4πa(t)2 δ
[
r−a(t)

]
. (11.141)

The current density is

J = ρvcollapse

=
e

4πa(t)2 δ
[
r−a(t)

]
ȧ(t)r̂ , (11.142)

since vcollapse = ȧ(t)r̂. Note that ȧ(t) < 0.
It may appear that there is something missing from these expressions for the

4-current density, namely, a factor of γ(ȧ). In the relativistic context, the zero com-
ponent of the 4-current density is normally the local proper charge density multi-
plied by the γ factor for whatever speed the charged fluid may have there. Likewise,
the spatial part of the 4-current density is proportional to the coordinate 3-velocity
with the associated γ factor. The above expressions thus imply that the local proper
charge density is in this case

ρproper =
e

4πa(t)2 δ
[
r−a(t)

]
γ−1[ȧ(t)

]
. (11.143)

This has a slightly unnatural appearance. However, it is right. It is the presence of
the delta function in the radial direction that leads to this odd-looking formula.

In fact, we can see directly that (11.141) and (11.142) are correct. To begin with,
they have the right ratio, which is just the coordinate 3-velocity. Secondly, (11.141)
gives the right amount of charge when integrated over spatial regions in some hy-
perplane of simultaneity of this coordinate system. Let us explain this. Consider a
small region δS on the shell, defined by angles subtended at the origin. Enclose in
an open region of thickness δr, defined by these same angles. Then (11.141) says
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that the charge in this region, as observed in the present frame of reference which is
not moving with the charge, is just

ρδSδr =
e

4πa(t)2 δS .

We have used the fact that the presence of δ
[
r− a(t)

]
δr just evaluates the rest of

the expression at r = a(t). This is indeed, the amount of charge we expect to find in
the given region. The total charge is then e.

Now (11.143) is the charge density in a frame moving with the charge locally,
which is actually a scalar field on the manifold. But the coordinate r appearing in
the expression is not the coordinate of an observer that would be moving with the
charge! When we make the appropriate transformation of the variable appearing in
the delta function, this will introduce a γ factor, precisely because it is the radial
coordinate that appears in the delta function, and the difference in motion between
the first observer (using coordinate r) and the second observer moving with the
charge is actually radial.

All this is very fortunate, because it is obvious that (11.139) is the right elec-
tric field here, and it actually implies the charge density (11.141) via the Maxwell
equations. Let us now check that Maxwell’s equations are satisfied. Note that we
have

∇× r
r3 = 0 . (11.144)

Now

∇×E = e∇×θ
[
r−a(t)

]
r

r3 = e

∣∣∣∣∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂ z

θx
r3

θy
r3

θz
r3

∣∣∣∣∣∣∣∣∣∣

= e




∂θ
∂y

z
r3 −

∂θ
∂ z

y
r3

∂θ
∂ z

x
r3 −

∂θ
∂x

z
r3

∂θ
∂x

y
r3 −

∂θ
∂y

x
r3




= eδ
[
r−a(t)

]




∂ r
∂y

z
r3 −

∂ r
∂ z

y
r3

∂ r
∂ z

x
r3 −

∂ r
∂x

z
r3

∂ r
∂x

y
r3 −

∂ r
∂y

x
r3




= 0 .

Furthermore,

∂E
∂ t

=−ȧ(t)δ
[
r−a(t)

]er
r3 =−4πJ ,

by comparison with (11.142). Concerning the last equation above, we have
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∇ ·E = eθ
(
r−a(t)

)
∇· r

r3 +
er
r3 ·∇θ

(
r−a(t)

)

=
er
r3 ·




∂
∂x

θ
(
r−a(t)

)

∂
∂y

θ
(
r−a(t)

)

∂
∂ z

θ
(
r−a(t)

)




=
er
r3 ·




∂ r/∂x
∂ r/∂y
∂ r/∂ z


δ

(
r−a(t)

)

=
er
r3 ·

r
r

δ
(
r−a(t)

)

=
eδ

(
r−a(t)

)

r2

= 4πρ .

This shows that, whatever the function a(t) describing the collapse, the fields

E = θ
[
r−a(t)

]er
r3 , B = 0 (11.145)

satisfy Maxwell’s equations for the sources

ρ =
e

4πa(t)2 δ
(
r−a(t)

)
, J =

e
4πa(t)2 δ

(
r−a(t)

)
ȧ(t)r̂ . (11.146)

This means that, whatever the function a(t), these are the fields generated by the
collapsing charged spherical shell.

The function a(t) remains undetermined by Maxwell’s equations. We can get
the shell to collapse at different rates, and Maxwell’s equations merely tell us what
fields will be generated. On the other hand, the Lorentz force law tells us how these
fields will act on the shell. In order to impose some particular a(t), we will need
to overcome the electromagnetic forces by applying, in general, other forces. Note,
however, that this is not the reason why we do not expect the associated electro-
magnetic energy–momentum tensor to be conserved. This tensor is not conserved
where there is matter, because we must then add a mass-energy tensor and it is the
total that is conserved. Indeed, it is the conservation of this total that implies the
Lorentz force law (see Sect. 2.4 and also [8, p. 115]).

For the sake of completeness, let us obtain the equation for a(t) by applying
the Lorentz force law. This might be compared with Sect. 5.2 of Parrott’s excellent
book [8], where he discusses the general spherically symmetric situation. [But note
a subtle difference with his equation (17) on p. 179 which is due to the fact that the
charged dust is infinitely compressed in the radial direction! Indeed, it highlights the
fact that we are still using a purely mathematical notion here to model our electron,
namely the notion of an infinitely thin surface of charge.]
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We have to borrow the results of Sect. 11.3.3 below here to get the 4-force density
on the shell. Starting with (11.157), viz.,

Θem = ε0θ
[
r−a(t)

]




− e2

2r4 0

0
e2

2r6




x2 xy xz
yx y2 yz
zx zy z2


− e2

2r4 I




, (11.147)

we calculate

f µ
em = Θ µν

em ,ν =
e2

8πr4 δ
[
r−a(t)

]
(ȧ, r̂) . (11.148)

This is obtained by the same arguments as are used below to get (11.162), except
that we have not used ȧ(0) = 0 here. In other words, we are obtaining the 4-force
density at a general time t.

Now consider the force on a small element of the shell with area δS, multiplied
by a radial thickness δr. The latter will evaluate the integrand at r = a(t) via the
delta function when we calculate the force on the element. Hence, the Lorentz force
law gives

m
du
dτ

=
e2

8πa4 (ȧ, r̂)δS . (11.149)

On the left-hand side, m is the mass of the element. Hence,

m =
me

4πa2 δS , (11.150)

where me is the mass of the electron. Furthermore, the 4-velocity of the element is

u = γ(ȧ)(1, ȧr̂) . (11.151)

The Lorentz force law now reads

me
d

dτ

[
γ(ȧ)(1, ȧr̂)

]
=

e2

2a2 (ȧ, r̂) . (11.152)

We recall that

d
dτ

= γ
d
dt

.

Hence, after a little calculation,

meγ4ä(ȧ, r̂) =
e2

2a2 (ȧ, r̂) . (11.153)
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This reduces to one equation due to the proportionality of the vectorial aspect.
Hence, finally,

γ4äa2 =
e2

2me
. (11.154)

Note that γ is a function of ȧ, making this a very nonlinear second order differential
equation!

The idea now would be to solve this equation starting with some initial conditions
for a shell collapsing from infinity, to find out how big it would be at the instant
when charge repulsion causes the collapse to stop, just prior to rebound. We shall
not attempt this. What is important for the moment is to see that it is indeed the
Lorentz force law that determines a(t), even though Maxwell’s equations alone were
satisfied for any function a(t). The latter fact just means that we can tamper with
the collapse (provided that it remains spherically symmetric) via other forces and
we still know what the electromagnetic fields will be. Effectively, the Lorentz force
law tells us how we must tamper with the collapse, i.e., what radial forces must be
supplied, in order to obtain some arbitrary function a(t).

Let us compare (11.154) briefly with Parrott’s equation (17) on p. 179 of his
book [8], viz.,

d2r
dt2 = k−1

[
1−

(
dr
dt

)2
]3/2

Q
r2 .

The function r(t) corresponds to a(t) and k := me/e. In the context of Parrott’s
discussion, Q(r) is a radially symmetric function on M which basically gives the
amount of charge contained in a sphere of radius r. The main difference with
(11.154) is that the latter contains a factor of γ4 rather than γ3. This arises because
the charged dust is infinitely thin in the radial direction! See the discussion just af-
ter (11.141) and (11.142). Another difference, undoubtedly of the same origin, is a
factor of 2.

Parrott points out that the equation he gives has no easy solutions. What about
(11.154)? It is not quite the same in structure as Parrott’s equation, due to the extra
γ factor, so it might just be soluble.

Let us now write down the energy–momentum tensor according to our definition
(2.32) on p. 11. By this definition,

Θem = ε0



−1

2
E2 0

0 EE− 1
2

E2I


 . (11.155)

11.3.3 Energy–Momentum Tensor for Collapsing Charged
Spherical Shell
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Let us just show that the covariant divergence of this is zero away from the shell.
When r < a(t), the fields are zero and this is obvious. When r > a(t), we have

E2 =
e2

r4 , EE =
e2

r6




x2 xy xz
yx y2 yz
zx zy z2


 . (11.156)

Hence,

Θ µν
em ,ν = ε0e2




−1
2

∂0
1
r4

∂x
x2

r6 +∂y
xy
r6 +∂z

xz
r6 −

1
2

∂x
1
r4

∂x
xy
r6 +∂y

y2

r6 +∂z
yz
r6 −

1
2

∂y
1
r4

∂x
zx
r6 +∂y

zy
r6 +∂z

z2

r6 −
1
2

∂z
1
r4




.

A straightforward calculation shows that all four components are zero, something
we knew anyway. This just says that the energy–momentum tensor is conserved
outside the shell.

The interesting part of the calculation of Θ µν
em ,ν is the part which deals with the

discontinuity at the charge shell. Since the step function θ squares to itself,

Θem = ε0θ
[
r−a(t)

]




− e2

2r4 0

0
e2

2r6




x2 xy xz
yx y2 yz
zx zy z2


− e2

2r4 I




, (11.157)

with the obvious notation. Apart from the step function in front, this is the same as
we had just above. This gives the pattern

Θ µν
em ,ν = ε0e2




− 1
2r4 ∂0θ

[
r−a(t)

]

(∂xθ)
[

x2

r6 −
1

2r4

]
+(∂yθ)

xy
r6 +(∂zθ)

xz
r6

(∂xθ)
xy
r6 +(∂yθ)

[
y2

r6 −
1

2r4

]
+(∂zθ)

yz
r6

(∂xθ)
zx
r6 +(∂yθ)

zy
r6 +(∂zθ)

[
z2

r6 −
1

2r4

]




. (11.158)

Now

∂0θ
[
r−a(t)

]
=−ȧ(t)δ

[
r−a(t)

]
, (11.159)
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and this is zero when t = 0 because ȧ(0) = 0. This alone shows that the dynamic
aspect of the situation, i.e., the collapse, will not influence our arguments, provided
we consider the situation at t = 0, when the stabilising forces are applied.

We also have

∂xθ = δ
[
r−a(t)

]∂ r
∂x

=
x
r

δ
[
r−a(t)

]
, (11.160)

with similar results for ∂yθ and ∂zθ . Evaluating at t = 0, we have

Θ µν
em ,ν

∣∣
t=0 = ε0e2δ (r−a)




0

x
r

[
x2

r6 −
1

2r4

]
+

xy2

r7 +
xz2

r7

x2y
r7 +

y
r

[
y2

r6 −
1

2r4

]
+

yz2

r7

zx2

r7 +
zy2

r7 +
z
r

[
z2

r6 −
1

2r4

]




=
ε0e2

2r5 δ (r−a)
(

0
r

)
. (11.161)

This is to be compared with the result (11.135) we claimed on p. 216, viz.,

f µ
em =

(
0,

e
4πa2 δ (r−a)

er̂
2a2

)
. (11.162)

We have the same result if we make the usual replacement ε0 → 1/4π . We do now
have the factor of 1/2.

It is interesting to see exactly how the factor of 1/2 arises here. Let us rederive
the above relation for the EM force density by considering the force on a charge q
with 4-velocity vi due to electromagnetic fields F i j in the form

φ i = qF i
jv j . (11.163)

This is the Lorentz force law. Note that qv j is the 4-current. If we have a charge
distribution with local rest frame density ρ and 4-velocity field vi, the 4-current
density of the distribution is Ji = ρvi. The 4-force density on this distribution is

f i = F i
kJk . (11.164)

In the present case,

ρ =
e

4πa2 δ (r−a) and vi = (c,0,0,0) , (11.165)

at t = 0. At earlier times, we can replace a by a(t) and we can write an expression
for the 4-velocity field in terms of a(t), viz.,
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vµ = γ(ȧ)
(
c, ȧ(t)r̂

)
. (11.166)

At t = 0, other forces come into play in Boyer’s scenario, and Maxwell’s equations
no longer determine the whole game. The function a(t) is not allowed to follow
its natural course under the sole influence of the electromagnetic effects. Instead,
it remains constant at the value a. But note that the energy–momentum tensor will
never be conserved at r = a(t), according to (11.161). Mechanical momentum is
converting into electromagnetic momentum all the time in this scenario.

We can evaluate the electromagnetic 4-force density at t = 0 using (11.164),
which gives

F i
kJk =




0 E1/c E2/c E3/c
E1/c 0 0 0
E2/c 0 0 0
E3/c 0 0 0







J0

0
0
0


 =




0
J0E1/c
J0E2/c
J0E3/c




=
e

4πa2 δ (r−a)(0,E) . (11.167)

Now we know that

E = θ(r−a)
er̂
r2 , (11.168)

implying that

F i
kJk =

e
4πa2 δ (r−a)θ(r−a)

er̂
a2 . (11.169)

It is the product of the delta function and the step function which gives rise to the
factor of 1/2, i.e., it is a standard result from distribution theory that

θ(x)δ (x) =
1
2

δ (x) . (11.170)

Returning to the calculation (11.169), we now have

F i
kJk =

e
4πa2 δ (r−a)

er̂
2a2 . (11.171)

11.3.4 The Main Argument

We now return to the main argument, continuing from where we left off on p. 216.
Given the result (11.162), we insert a factor of 1/2 into our (11.130). We now find
that
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∆P′ =
v

3c2 γUem =
e2γv
6ac2 . (11.172)

The total system momentum after all the external stabilising forces have been ap-
plied has been changed in the S′ frame from the value

P′tot =
v
c2 γUtot

to

P′(after)
tot =

v
c2 γUtot +

v
3c2 γUem

= vγm+
4
3

v
c2 γUem . (11.173)

This corresponds to the momentum of the mechanical mass m and exactly the elec-
tromagnetic momentum found by integrating over the traditional field momentum
density [noting the different units compared to (2.39) on p. 12]

g′ =
1

4πc
E′×B′ . (11.174)

Boyer calculates this as follows (contrast with our method in Sect. 3.2). We have to
evaluate

P′em :=
1

4πc

∫
d3x′E′×B′ . (11.175)

We express E′ and B′ in terms of E and B using the standard formulas [2, Chap. 26]

E′ = γ(E− cβ ×B)− γ2

γ +1
β (β ·E) , (11.176)

B′ = γ
(

B+
1
c

β ×E
)
− γ2

γ +1
β (β ·B) , (11.177)

where β = v/c. Fortunately, B = 0, so

E′ = γE− γ2

(γ +1)c2 v(v ·E) , (11.178)

B′ =
γ
c2 v×E . (11.179)

Hence,

E′×B′ =
γ2

c2 E×(v×E)− γ3

(γ +1)c4 (v ·E)v×(v×E)

=
γ2

c2

[
E2v− (v ·E)E

]− γ3

(γ +1)c4 (v ·E)
[
(v ·E)v− v2E

]
.
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Because E and hence the whole integrand is constant in t (we are now considering
the static charge shell), we can replace the integral

∫

HOS′
d3x′ −→

∫

HOS

d3x
γ

.

Now

E2v− (v ·E)E = (E2
x +E2

y +E2
z )




v
0
0


−




vE2
x

vExEy
vExEz




= v(E2
y +E2

z )− v




0
ExEy
ExEz


 .

Both nonzero components of the second term integrate to zero by symmetry. We
also have to consider

(v ·E)2v− v2(v ·E)E = v2E2
x




v
0
0


− v3




E2
x

ExEy
ExEz




= −v3




0
ExEy
ExEz


 ,

which integrates to zero by symmetry. We are left with

1
4πc

∫
d3x′E′×B′ =

γ
4πc3

∫

HOS
d3xv(E2

y +E2
z ) . (11.180)

By the spherical symmetry of the fields in the unprimed frame S, we can replace

E2
y +E2

z −→
2
3

E2

in the integrand, and hence

1
4πc

∫
d3x′E′×B′ =

4
3

v
c2 γUem , (11.181)

as required above.

11.3.5 Conclusion Regarding the Collapsing Charge Shell

The factor of 4/3 in the electromagnetic momentum is by no means an anomaly. It
is needed to maintain the validity of the force–momentum balance in the S′ frame.
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A physical particle or system will in general involve contributions to the total mo-
mentum from both the electromagnetic fields and other sources. In our example the
mechanical momentum of the shell at spatial infinity is converted into electromagne-
tic momentum as the shell rushes inward. Only the total momentum can be expected
to satisfy covariant behaviour when transformed between different inertial frames.
So the factor of 4/3 may not actually be an embarrassment that should be removed.

One method for removing the factor involves redefining the electromagnetic mo-
mentum of the system so that it is not the integral of the density

g :=
1

4πc
E×B ,

but the integral of something rather different. This is what we shall investigate
shortly (see Sect. 11.4). Such redefinitions are not what is advocated in this book,
but they need to be given due consideration.

The view here is that Boyer’s arguments in [23] do indeed hold water. He claims
that the usual ideas of force, energy, and momentum hold together properly with the
traditional definition and not with the use of the density function to be considered
shortly [see (11.199) on p. 235]. The latter may eliminate the factor of 4/3, but what
relation does it bear to momentum as we know it? Consider the example of the
spherical charge shell: if the laws of physics are to hold for all inertial frames in
such an open system in which non-electromagnetic external forces are applied, then
the electromagnetic field momentum should not transform as a Lorentz four-vector
and the factor of 4/3 is a consistent reflection of this fact.

Boyer considers that it is an error to take seriously as a model for a point charged
particle the electromagnetic energy and momentum behaviour of the classical model
of the electron despite the non-electromagnetic forces required for stability in the
classical model [23]. The non-electromagnetic stabilising forces play a crucial role
and the attempts to circumvent the role played by these forces by redefining the
electromagnetic momentum density only destroy the conceptual simplicity of the
traditional view of classical electrodynamics. Naturally, Rohrlich does not agree
[22].

Note the essential role of the mechanical mass for the collapsing shell model.
Indeed, it could not be set to zero for this construction of the electron from infinity
(which is not intended to be realistic anyway). The point is that, at the beginning of
the construction, all the energy and momentum of the system is in the mechanical
mass and its motion. Viewed in the inertial frame in which the electron is finally at
rest, part of this mechanical energy–momentum is gradually converted to electro-
static field energy. However, this observation should not lead the reader to think that
we have here an argument against the idea promoted in this book that all inertial
mass might be of bootstrap type. It is simply a quirk of the present demonstration,
which merely aimed to show that the 4/3 factor should be present in our formulas,
or put another way, that the energy and momentum of the EM fields outside a charge
shell should not form a Lorentz covariant four-vector.

In a moment, we shall reconsider Rohrlich’s formulas (11.11) and (11.13) on
p. 185 and see exactly why they give a Lorentz covariant four-vector. But first, let
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us attempt to apply the Boyer collapse argument to the charge dumbbell. This will
be an opportunity to understand it in a different context, but one that turns out to
be physically more sophisticated than the one provided by the charge shell. At the
same time, it will give us a clue as to why there is no discrepancy between the
energy- and momentum-derived EM masses for transverse motion of the system
(see Table 10.1).

11.3.6 Collapse Model for the Charge Dumbbell

Consider a model in which two charges qe/2 move in from infinity along a straight
line to meet one another (or almost) at the origin. They each start out with the
same speed, which is exactly the right value to ensure that, when they are just a
distance d apart (each a distance d/2 from the origin), they are both stationary in
the inertial frame from which we view this (the center of mass frame). At this point
the binding forces of the system are switched on. The two charges subsequently
remain motionless in the given frame.

The binding force we have to switch on at the crucial instant (just one instant of
time for this frame!) is the Coulomb force e2/4d2, where e2 := q2

e/4πε0. Now imi-
tating the collapsing shell model, one would like to say that the EM fields thereafter
have energy

Uem =
e2

4d
,

as calculated in Sect. 5.1 [see (5.4) on p. 74]. But, of course, something goes wrong
here, because that would only be the energy if the two charges had always been
sitting at their final resting places. The fact that they were just previously in motion
spoils this picture. The beauty of the spherically symmetric charge shell model is
that the fields outside it are always instantaneously the Coulomb fields, as shown in
Sect. 11.3.2.

In this frame, the initial kinetic energy of the charges is

initial kinetic energy = ∑
charges

mchargec2(γ−1) ,

where each charge is assumed to have a mechanical mass mcharge, and γ is the usual
relativistic function of the required initial speed. That is fine, but unfortunately, there
is always a great deal of EM energy in the fields, even initially. Once again, the
beauty of the collapsing shell model is that the fields are identically zero within it,
so if we assume that the whole of space is initially within it, then there is no EM
energy to begin with.

Note also that, in the case of the spherical charge shell, the magnetic field was
always zero outside the shell during collapse, so there could be no radiation loss.
This meant that all the initial kinetic energy at infinity could be converted into elec-
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trostatic potential energy when the shell came momentarily to rest. In the present
case, there are definitely magnetic fields around, and there will definitely be EM
radiation. These considerations make a collapse scenario much less informative for
the charge dumbbell.

However, there is an interesting point here, which will eventually explain why
there is no discrepancy between the energy- and momentum-derived EM masses for
transverse motion of the system, as is evident from Table 10.1. In Sect. 11.6.1, we
shall consider a system (the charge shell again) that has always been stabilised by
some cohesive forces, and we shall show how the binding forces contribute to the
total four-momentum of the system in a frame in which the system appears to be in
motion.

The reason is just this. When the system is moving, the cohesive forces act for
different lengths of time on different parts of the system, in such a way that they
do not always balance one another. This transpires directly from examination of the
calculations in Sect. 11.6.1, and the point is discussed explicitly in Sect. 11.6.2. The
idea is already present in the collapse model for the shell, and it perdures even in
the case where, rather than switching on the cohesive forces at some specific set of
spacetime events, these forces have always been in operation.

Now consider the charge dumbbell in transverse motion along the x axis. We see
immediately that, if the binding force were switched on at some specific time in the
rest frame, it would nevertheless affect both charges at the same time in the moving
frame, just because their positions have the same x coordinate at any instant of time
in the moving frame. We would never therefore expect to see an imbalance of the
cohesive forces that could lead to a momentum contribution, and this perdures to
the ever-stabilised case.

But when we consider the same dumbbell in longitudinal motion along the x axis,
switching on a binding force at some specific rest frame time amounts in the moving
frame to switching on the force on the left-hand particle first. The binding force
would only come into effect on the right-hand particle a time 2γva/c2 later, where
a = d/2, so the force to the right on the left-hand particle would be unbalanced for
a time γvd/c2. In the rest frame system, the force to be countered by the binding is
just the Coulomb force e2/4d2. In the moving frame, this gives a four-force

F ′ =
(

γ γv/c
γv/c γ

)(
0

e2/4d2

)
=




γv
c

e2

4d2

γe2

4d2


 .

We are interested in F ′/γ = e2/4d2, as explained on p. 215, so the impulse here is
just the product, viz.,

impulse due to binding forces =
γvd
c2

e2

4d2 =
e2

4c2d
γv ,

and this is in the direction of v. This corresponds precisely to the discrepancy bet-
ween the energy-derived EM mass e2/4dc2 and the momentum-derived EM mass



230 11 Reconciling Energy- and Momentum-Derived EM Masses

e2/2dc2 for this case (see Table 10.1). The latter should indeed be twice the former,
because we have to add in the impulse from the binding forces, when viewing from
this frame.

Strictly speaking, this analysis needs to be reformulated for the case of an ever-
stabilised charge dumbbell, with the kind of analysis used in Sects. 11.6.1 and 11.6.2
for the charge shell. This can be left as the proverbial exercise for the reader (see in
particular the end of Sect. 11.6.2).

11.4 Why the Redefined Four-Momentum Is Lorentz Covariant

We shall use the notation xR for rest frame coordinates and x without a subscript for
coordinates in the frame moving to the left in such a way that the electron world-
line moves off to the right, with four-velocity components vµ . The subscript R will
generally indicate that a quantity is found relative to the electron rest frame. Note
also that we do not take γdσ = d3x in Rohrlich’s formulas, but rather dσ := γd3x.
One of the assertions made here is that we must in fact make this definition in order
to obtain covariance. Finally, we use an observation similar to the one in (11.61) on
p. 198, wherein the rest frame energy–momentum tensor is seen to be constant with
respect to the rest frame time tR.

We thus take Rohrlich’s definition to be

Pµ =−1
c

∫
HOS

outside electron

T µν vν γd3x . (11.182)

Let La
b be the Lorentz transformation from the rest frame of the electron to the

frame in which it appears to be moving to the right. Then the argument is this:

La
bPb

R = −1
c

∫
HOS(R)

outside electron

La
bT bc

R vR
c d3xR

= −1
c

∫
HOS

outside electron

La
bT bc

R vR
c γd3x

= −1
c

∫
HOS

outside electron

T acvcγd3x .

In the second step we move from an integration over the rest frame HOS to an
integration over the HOS in the moving frame, using the fact that everything in the
integrand is constant with respect to the rest frame time (although not with respect
to the time in the moving frame).

This is the exact parallel of what is expressed in (11.61). We are using something
rather accidental, i.e., the fact that the electron is decreed a static structure in its
rest frame, so that the energy–momentum tensor in that frame is constant with res-
pect to time in that frame. Furthermore, this manoeuvre has nothing of the standard
integration theory. This is illustrated by the fact that the covector-valued measure
vµ γd3x is not normal to the surface of integration in the definition (11.182). Indeed,
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it is normal to the rest frame HOS. In other words, whatever HOS we integrate over,
we always reduce to an integration over the rest frame HOS, as witnessed by the
explicit appearance of vµ in the formula.

The above argument naturally works backwards:

(L−1)a
bPb = −1

c

∫
HOS

outside electron

(L−1)a
bT bcvcγd3x

= −1
c

∫
HOS

outside electron

T ac
R vR

c γd3x

= −1
c

∫
HOS(R)

outside electron

T ac
R vR

c d3xR .

In the last step, we use the fact that the integrand is constant with respect to the
rest frame time tR. This shows quite sharply why Rohrlich’s definition gives a Lo-
rentz covariant quantity. Let us now see the connection with the well known Lorentz
invariant FmnFmn.

Connection with FmnFmn

We have just seen that, although Rohrlich achieves Lorentz covariance, his definition
(11.182) is somewhat contrived: we use a covector field vm that is not normal to the
relevant spacelike hypersurface in spacetime and we stick in a factor of γ . What is
more, it only works because the electron has a static structure in its rest frame, so
that the energy–momentum tensor of its fields is constant with respect to time in that
frame. Let us therefore aim for a slightly more elegant formulation in terms of the
well known Lorentz invariant FmnFmn.

With the definition (2.12) of Fmn on p. 8, it is easy to check that

FmnFmn =− 2
c2 (E2− c2B2) . (11.183)

Let us first look at the situation in the electron rest frame. Here we have B = 0 and
we note that

−ε0c2

4
FR

mnFmn
R =

ε0

2
E2

R = uR . (11.184)

Since we have the argument

P0
R =

∫
HOS(R)

outside electron

uRd3xR

=
∫

HOS
outside electron

−ε0c2

4
FR

mnFmn
R γd3x

=
∫

HOS
outside electron

−ε0c2

4
FmnFmnγd3x ,
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it might on the face of it look as though the other term in the energy–momentum
tensor, i.e., −ε0c2F i

lF lk, does not contribute. In fact, this is not so because of the
signs associated with the terms. We have

T ik =−ε0c2
(

F i
lF lk +

1
4

FmnFmnη ik
)

, (11.185)

and Rohrlich defines

Pi =−1
c

∫
HOS

outside electron

T i jv jγd3x . (11.186)

The point is that we have a minus sign in front of the integral, which means that the
second term in the energy–momentum tensor actually gives

−
∫

HOS
outside electron

−ε0c2

4
FmnFmnγd3x ,

in the rest frame where v j = (c,0,0,0). This means that the term −ε0c2F i
lF lk does

in fact contribute. However, we do have the key to our present reduction here!
Once again, it is easy to check from the definition (2.12) of Fmn on p. 8 that

ε0c2F i
RlF

lk
R vR

k = ε0

(
E2

R 0
0 −EE

)(
c

0

)
= ε0

(
cE2

R

0

)
. (11.187)

We have seen that

ε0c2

4
FR

mnFmn
R =−1

2
ε0E2

R , (11.188)

whereupon

T ik
R vR

k =−ε0

[(
cE2

R
0

)
− 1

2

(
cE2

R
0

)]
=−c

ε0

2
E2

R

(
1
0

)
. (11.189)

Naturally, this leads to

−1
c

∫
HOS(R)

outside electron

T ik
R vR

k d3xR =
∫

HOS(R)
outside electron

ε0

2
E2

Rd3xR

(
1
0

)
=

(
P0

R
0

)
. (11.190)

The key is this: both terms in the energy–momentum tensor contribute and further-
more
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c2F i
RlF

lk
R vR

k =
(

cE2
R

0

)
= −2×−1

2
E2

R

(
c
0

)

= −2× c2

4
FR

mnFmn
R vi

R

= −c2

2
FR

mnFmn
R vi

R .

This tensor relation must hold in every frame! We have the quite general result

F i
lF lkvk =−1

2
FmnFmnvi . (11.191)

This only requires the electron structure to be static in the electron rest frame, so
that the magnetic fields in that frame are zero.

We now have a miraculous transformation of Rohrlich’s definition. Since

T ikvk =−ε0c2
(

F i
lF lkvk +

1
4

FmnFmnvi
)

=
ε0c2

4
FmnFmnvi (11.192)

in any frame, it follows that Rohrlich’s definition becomes

Pi =−1
c

∫
HOS

outside electron

ε0c2

4
FmnFmnviγd3x , (11.193)

or again,

Pi =−1
c

vi
∫

HOS
outside electron

ε0c2

4
FmnFmnγd3x . (11.194)

The integrand can be rewritten FR
mnFmn

R , since this is evidently a scalar, and this is
constant with respect to time in the rest frame. We replace the integral over the HOS
in the moving frame by an integral over HOS(R), replacing γd3x by d3xR.

This makes it very clear how Lorentz covariance comes about. It is the factor of
vi outside the integral that now holds the key. The integral part is merely a scalar.
Indeed, it is evidently the electromagnetic mass of the electron up to a factor! We
expect

Pi = memcvi . (11.195)

This does indeed work correctly, since

− 1
c2

∫
HOS(R)

outside electron

ε0c2

4
FR

mnFmn
R d3xR =

1
c2

∫
HOS(R)

outside electron

uRd3xR = mem . (11.196)

This is clearly a highly contrived definition of the 4-momentum of the electromagne-
tic fields with a view to achieving Lorentz covariance. We can now say that Lorentz
covariance is achieved because of the fortuitous reduction (11.192) combined with
the assumption that the fields are static in the electron rest frame.
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Connection with Earlier Calculations

Let us just refer back to (11.11) and (11.13) on p. 185, viz.,

W = γ
∫

udσ − γ
c2

∫
S ·vdσ , (11.197)

and

p =
γ
c2

∫
Sdσ +

γ
c2

∫
T·vdσ . (11.198)

What do these tell us about calculation results like (3.9) on p. 35? In fact, if as Rohr-
lich claims one can replace γdσ by d3x, this tells us that the first terms in (11.197)
and (11.198) correspond precisely to what one would calculate using the naive inte-
grals of the energy and momentum densities outside the charge shell (which Rohr-
lich refers to as the Abraham–Lorentz prescription).

The rule advocated above on the basis of the integration theory exemplified in
(11.61) on p. 198, namely dσ = γd3x, is not so elegant in this respect! The γ fac-
tors accumulate here. We have to multiply the Abraham–Lorentz terms by γ2, even
though they already contain their γ factor, according to (3.9). But this is indeed the
way we must interpret Rohrlich’s definition according to this analysis. And it is
corroborated by other accounts of this affair, as we shall see now.

11.5 New Density for the Field Four-Momentum

Let us take a look at what we are in fact advocating here to be the new density for
the field four-momentum, if we follow Rohrlich [21] and the prescription dσ = γd3x
proposed above. Since

T µν =

(
−u −S/c

−S/c T

)
,

where

T := ε0

[
EE+ c2BB− 1

2
(E2 + c2B2)I

]
,

we soon find that (11.198) implies

pem =
ε0

c

∫
γdσ

[
E×B+β ·EE+ c2β ·BB− 1

2
β (E2 + c2B2)

]
,

where β := v/c. This is similar to what Boyer [23] claims Rohrlich to be using
(although with reference to a later paper by Rohrlich), viz.,
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pem :=
γ

4πc

∫
d3x

[
E×B+v ·EE+v ·BB− 1

2
v(E2 +B2)

]
. (11.199)

but note the different units in this version and the fact that c = 1. If we use Rohrlich’s
prescription γdσ = d3x, we almost get the same thing, but not quite. There is a factor
of γ too many in (11.199). With the prescription advocated here, namely dσ = γd3x,
there is a factor of γ too few in (11.199).

The reader should note that all these discrepancies over the integration measure
are not the main argument against Rohrlich’s proposal. They are only an incidental
problem that illustrates that the integration itself is not such a trivial matter as might
be suggested by the little space devoted to it in these papers. The main argument
we would like to make against these revisions of the definition of the EM four-
momentum is just that it is ad hoc. Let us illustrate this further by considering the
paper [24] by Moylan, entitled An Elementary Account of the Factor of 4/3 in the
Electromagnetic Mass.

This is a naive account, rather than an elementary one, as attested by the claim
in the abstract that the resolution of the discrepancy in the title involves the correct,
i.e., relativistically covariant, definitions for the momentum and energy of the elec-
tromagnetic field. It does have the merit of showing very clearly why the Rohrlich
strategy delivers a Lorentz covariant four-momentum for the EM fields around the
charge shell, although unfortunately marred by several typographical errors. Here
we examine the key part of the article and comment on it in the light of the interpre-
tation we have been making.

We are told that the discrepancy can be resolved by redefining the total energy
and the total momentum of the electromagnetic field in a relativistically covariant
way. The general definition of the electromagnetic four-momentum in any Lorentz
frame is then given as

Pµ =
∫

Σ
Tµν dσν , (11.200)

where

Tµν = Fµρ Fρν +
1
4

gµν Fρσ Fρσ . (11.201)

This is basically the negative of our own formula (2.32) on p. 11. We have had
to adjust Moylan’s definition of the energy–momentum tensor, which contained a
mistaken use of the Einstein convention for summing over indices. What we have
now looks like our own version in (2.32), apart from a factor of −ε0. The factor of
ε0 is dealt with in Moylan’s article by the definitions

Ei =
1√
ε0

Fi0 , Bi =
1
2
√

µ0εi jkFjk , (11.202)

with the further specification Fµν =−Fνµ . He takes

gµν = diag(1,−1,−1,−1) .
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Recall that c2 = 1/ε0µ0. A quick check shows that Moylan’s EM field tensor is the
negative of the one in (2.12).

These are details, showing that our conventions are not so widely removed from
each other. The key point is to understand Σ and dσν . We are told that

dσν = ην d3σ , (11.203)

where d3σ is an element of volume on a spacelike hypersurface Σ , with ην a time-
like vector normal to the hyperplane Σ . This vector is expressed in the suggestive
form

ηµ = γ(1,β ) , β = v/c . (11.204)

This clearly indicates that the integration is taken over the rest frame HOS, since
this is the only one normal to the 4-velocity ηµ of the electron. Then d3σ is an
element of volume on the spacelike hyperplane Σ , so it has to correspond to what
we called d3xR in Sect. 11.4. This is indeed an invariant volume element because we
specify it as the volume element on Σ whatever frame we view from. It coincides
with Rohrlich’s dσ .

Looking now at the formula (11.200), it is almost as though we are integrating
over the rest frame HOS. However, this is a little misleading. The present view is
that T R

µν must be static for this to work. Then it makes sense to put d3σ = γdV ,
where dV is d3x in the relevant coordinate system and its HOS. This is then the
rule d3xR = γd3x advocated in this book. We can only guess here, because Moylan
merely says that d3σ = dV in the rest frame and d3σ = γdV in a general Lorentz
frame, without specifying what dV actually is! We thus assume that it is just the
coordinate volume measure d3x in whatever coordinates we are using.

Note in passing that Moylan imputes his rule d3σ = γdV to the famous book
on classical electrodynamics by Jackson [26]. Consulting this source, in particular
Sect. 16.5, we do indeed find corroboration of the idea that d3σ = d3xR is the inva-
riant measure, and that the measure d3x on the HOS of some relatively moving frame
is related to this by d3xR = γd3x. (But be warned! Jackson uses primed coordinates
for his rest frame, and unprimed for the moving frame.)

We should stress the point about the assumption that the energy–momentum ten-
sor is static. We said that it looks as though we are integrating over the rest frame
HOS, and in a sense we are. But when we replace d3σ by γdV , the intention is
obviously to integrate over the HOS in the moving system! This only works when
the energy–momentum tensor is static, as we have shown. The point is that the rest
frame and moving frame hyperplanes of simultaneity are different regions of space-
time, and if T R

µν varied with (rest frame) time tR, we could not successfully change
the variables in the integration.

Moylan now produces a long calculation which is intended to show how this
‘correct’ definition produces something that is indeed Lorentz covariant. Let us ex-
ploit this to check the present interpretation of all these goings on. To begin with,
using a primed notation in the moving frame,
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E ′ = P′0 =
∫

Σ
T ′0ν dσν . (11.205)

We then expand out the energy–momentum tensor in two terms, one going with η0

and the other with η i for i = 1,2,3. We have (putting primes on everything, unlike
Moylan),

∫

Σ
T ′0ν dσν = −

∫

Σ

[
F ′0iF

′
0 jg

i j− 1
4

g00
(
F ′0iF

′0i +F ′i0F ′i0 +F ′i jF
′i j)

]
η0d3σ

−
∫

Σ
F ′0 jF

′
ikg jkη id3σ , (11.206)

where Latin indices run over {1,2,3}. All the terms here are integrated over the rest
frame HOS labelled Σ . In the next step we switch to an integral over the primed
HOS. This is signalled by the replacement of Σ by R3. The two terms in the last
formula become (after correcting a crucial typographical error in the sign of the
second term)

∫

R3

(
1
2

ε0E′2 +
1

2µ0
B′2

)
γ2dV −

∫

R3

(
1

µ0c2 E′×B′
)
·vγ2dV ,

where the measure d3σ on the rest frame HOS has been replaced by γdV , which
means what we would call γd3x′. The integrands are functions of the primed fields,
but they are constant with changing rest frame time. (To see this, express the pri-
med fields as functions of the unprimed fields, which are independent of the rest
frame time.) Note that the other γ factor comes from the 4-velocity as in Rohrlich’s
formulas (11.197) and (11.198).

The primed fields E′ and B′ are given by

E′ = γ(E− cβ ×B)− γ2

γ +1
β (β ·E) , (11.207)

B′ = γ
(

B+
1
c

β ×E
)
− γ2

γ +1
β (β ·B) . (11.208)

This is a general result for the Lorentz transformation of electric and magnetic fields
[2, Chap. 26]. In the present case, B = 0. The point here is not to replace the primed
fields by the unprimed fields in the formula, because the aim is in fact to write the
‘correct’ expression for the field 4-momentum as an integral of the primed fields
over the primed HOS. However, using the fact that

E′ = γE− γ2

γ +1
β (β ·E) , B′ =

γ
c

β ×E , (11.209)

we can rewrite the expression (E′×B′)·v :
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(E′×B′)·v = (v×E′)·B′

= γ(v×E)·γ
c
(β ×E)

=
γ2

c2 (v×E)2

= c2B′2 . (11.210)

We deduce finally that

E ′ =
∫

R3

(
1
2

ε0E′2− 1
2µ0

B′2
)

γ2dV . (11.211)

Equation (11.211) is to be compared with (11.193). It agrees entirely. In (11.193),
we have γ and in (11.211), we have γ2, but this is because one γ factor is absorbed
into vi in (11.193).

Note that Moylan does something rather surprising in the last line of his argu-
ment. In a last step, he replaces γdV in (11.211) by his d3σ . This is presumably due
to some embarrassment at finding a factor of γ2. Recall that, if the above interpreta-
tion is correct (and Moylan neglects completely to go into the details), d3σ is just a
name for γd3x′.

It is easy to check that

cP′ = P′i = γβ
∫

R3

(
1
2

ε0E′2− 1
2µ0

B′2
)

γdV . (11.212)

This also agrees entirely with (11.193). Looking at (11.211) and (11.212), we can
see just how arbitrary this covariant extension actually is! It agrees with the usual
definition in the electron rest frame for the simple reason that the magnetic field is
zero there. Elsewhere, the expression (11.211) for the field energy is quite different
because the magnetic field energy is subtracted rather than added!

Before leaving Moylan’s paper, it is worth considering the line he adopts with
regard to Boyer’s paper [23], mentioned only in passing. He describes this paper as
an interesting and controversial treatment based on Poincaré’s approach, and des-
cribes Rohrlich’s paper [22], to be discussed shortly, as a severe criticism of it. He
firmly sides with the author of [22], in favour of what he calls the relativistically
covariant approach, which is the one advocated by Rohrlich. Unfortunately, he does
not appear to have thought much about what the disagreement really is between
the two approaches. The question here is this: is it better to consider the electron
as a spatially extended object and take into account the complexity this involves,
or is it better to make an ad hoc redefinition of a physical quantity so that one can
carry through the point-particle approximation and the resulting mass renormali-
sation without regard for what may really be going on physically behind such an
approximation?

There is another very telling point to make here. If someone gives an account
of some physical process in one inertial reference frame, and then gives another
account of it in another, relatively moving frame by carrying out a Lorentz transfor-
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mation, then that person is giving a covariant account of the physical situation. It is
not because not all the features of a given description are not separately manifestly
covariant that this description is not covariant. The Boyer (or Poincaré) approach is
of course Lorentz covariant. The difference in Rohrlich’s approach is that something
which should not actually be Lorentz covariant is forced to be in a completely ad
hoc manner for the purposes of a piece of theory.

11.6 Binding Forces Revisited

The aim in this section will be to use Rohrlich’s criticism [22] of Boyer’s idea in
order to get a more precise picture of how binding forces can be modelled for the
charge shell, and also to understand what appears to be a slightly different version
of the redefinition approach to the one described in [21].

We ought to note at the outset that Rohrlich’s paper, which purports to criticise
the ideas described above, actually misses the point on several counts. He opens by
saying that Boyer’s paper raises some questions that were settled some time earlier,
but then provides only one question: whether the EM energy and momentum of the
Coulomb field surrounding a charged particle are or are not the components of a
four-vector. It is highly unlikely that Boyer ever had any doubts that they would
not be. The whole point of involving binding forces is to show how the physics
works out in a model where the electron is at least stabilised. In a moment, we shall
see another count where Rohrlich clearly misses the point of the collapse model
described above, despite the condescending tone of his paper.

As we shall adopt Rohrlich’s notation from [22], let us see how he begins this
paper. The model of the classical charged particle is a sphere of radius a, mass m,
and uniformly distributed surface charge e. As a free object it is a closed system that
has a total energy P0 and momentum P, which transform as components of a four-
vector. If the entire particle were expressible by means of a field and an associated
energy tensor Θ µν , such a tensor would necessarily have to satisfy

∂αΘ αµ = 0 ,

since the system is closed. The momentum defined by

Pµ =
∫

σ
d3σαΘ αµ(x)

would therefore be independent of the choice of spacelike surface σ .
This much we can understand, as discussed at length earlier (see Sect. 11.2.2).

Note, however, that this scenario differs from Boyer’s in that Rohrlich considers a
closed system. There is, of course, nothing to stop Boyer from treating the stabilising
forces as external. According to Rohrlich, the price to pay is a lack of covariance in
the various parts.
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The particle is not purely electromagnetic, but contains an electromagnetic com-
ponent (the Coulomb field) and a non-electromagnetic one. We accept the usual
assumption that these two components are additive in the energy tensors:

Θ µν = Θ µν
e +Θ µν

n .

Neither of the two components of Θ µν is separately conserved:

∂αΘ µν
e =−∂αΘ µν

n 6= 0 .

This means that the decomposition of Pµ into Pµ
e and Pµ

n given by

Pµ =
∫

σ
d3σαΘ αµ

e +
∫

σ
d3σαΘ αµ

n

=: Pµ
e +Pµ

n ,

involves two surface integrals which are not separately independent of σ . But the
sum is independent of σ as long as the same σ is chosen in both integrals.

If this trivial observation is the gist of Rohrlich’s counterargument, then it is clear
that he has missed the point. He is merely restating his own scenario. However, one
good thing is that we do get an explicit description of the latter. We are apparently
faced with a choice:

• We can allow any inertial observer to use her own HOS σ described by some
formula t = constant and calculate things in the way Boyer does.

• Whatever the observer is doing, we can use the electron rest frame HOS tR =
constant (denoted by σR) for calculations.

The second choice means that we take the integrals to be

P0
e :=

∫

LσR

d3σαΘ α0
e , Pk

e :=
∫

LσR

d3σαΘ αk
e . (11.213)

Rohrlich does not specify what LσR is supposed to be, although he does say that
σ = LσR. L is the Lorentz transformation from the rest frame to the observer’s
frame. Since σ = LσR, and since σ is supposed to be the rest frame HOS, which we
denoted by σR, we shall assume that LσR is the rest frame HOS as described in the
observer’s coordinates.

In this paper, Rohrlich takes d3σα = vα d3xR = γvα d3x, which seems to confirm
that he made a mistake in his earlier paper. Moreover, as we have noted, if this
relation is supposed to be a relation between measures on different spacelike hyper-
surfaces (rest frame HOSR and observer HOS), it will only serve our purposes here
because the integrands turn out to be independent of rest frame time tR.

We are told that a macroscopic charged sphere would be described by an energy
tensor only for its electromagnetic fields, whilst its non-electromagnetic component
would be described by a force density f µ(x). We are also told that Boyer breaks the
latter into a mechanical part leading to a momentum Pµ

m and a part describing the
cohesive forces that prevent the charged sphere from expanding. The part f µ

coh is just
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the force density that provides the cohesive forces (or Poincaré stresses). Rohrlich
says that Boyer is wrong to call this an external force. But surely, we can define the
system any way we want. We are free to say what is in it and what is not.

Rohrlich states that this force is not physically separable from the rest of the non-
electromagnetic components in a classical macroscopic body. According to Rohr-
lich, without including this cohesive force, the physical charged particle cannot pos-
sibly be proven to have a momentum Pµ =

∫
σ d3σαΘ µν(x) that is a four-vector. It

may seem surprising to see this, since it would appear to be precisely the point of
the Boyer approach to show the relevance of the binding forces. Of course, in his
collapsing shell model, the binding forces were only applied when the radius of the
shell reached its final value a, at which the collapse comes to a halt. This is why
there is momentum transfer from the mechanical momentum of the shell to the EM
fields, until the binding forces are switched on.

Indeed this is why Boyer separates the momentum Pµ
m off and treats it as a 4-

vector on its own. Then the local conservation law ∂αΘ αµ = 0 is reduced to

∂αΘ αµ
e + f µ

coh = 0 . (11.214)

This just says that the electromagnetic forces and the cohesive forces balance in
the particle. So, of course, Pµ

m is not conserved on its own in this scenario, because
the electromagnetic forces were only balanced when the shell reached its radius
r = a. We have discussed the question of the connection between a quantity being
a 4-vector and its being conserved with great care in Sect. 11.2.2 (see in particular
p. 204 ff.). When an energy–momentum tensor is conserved, we can define a Lo-
rentz covariant 4-momentum from it by integration over a spacelike hypersurface.
Furthermore, this 4-momentum is constant in time [see (11.75) on p. 201].

This presumably explains why Rohrlich wishes to discuss a scenario in which
the charged sphere is produced by contraction of an infinite sphere but applying the
stabilising f µ

coh at all times and contracting adiabatically to r = a. But it is not easy
to see how this idea is born out by the calculations that ensue. (The word ‘adiaba-
tically’ is often used casually, and it is not always clear exactly what is intended
by it.) However, note that Boyer takes f µ

ext(t,r) = − f µ
em(t,r)θ(t− t0), and it is the

absence of the step function in Rohrlich’s analysis which presumably indicates that
he balances electromagnetic repulsion by cohesive force throughout his contraction.
The problem then is to see exactly where the contraction comes in. As in Boyer’s
discussion, there is no function a(t) describing the radius of the sphere at time t.

Now Rohrlich is intent on producing a closed system, wherein he may claim that
the total momentum is

Pµ = Pµ
m +Pµ

e +Pµ
coh , (11.215)

with

Pµ
e =

∫

σ
d3σαΘ αµ

e , Pµ
coh =−

∫

V4(σ)
d4x f µ

coh . (11.216)
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This new notation V4(σ) describes the region of spacetime over all times from −∞
up to the spacelike hypersurface σ . What we are calculating to get Pµ

coh is a force
density times a spatial volume element, times a time increment, which is therefore
the total momentum imparted by this force field up to the time corresponding to σ .
We note that if there existed a tensor Θ µν

coh with f µ
coh = ∂αΘ µν

coh, we would have

−
∫

V4(σ)
d4x f µ

coh =
∫

σ
d3σαΘ αµ

coh .

Rohrlich takes pains to point out that the σ occurring in the expressions for Pµ
e and

Pµ
coh must be the same, in case someone might get the idea of using a different σ for

each part.
What we shall do in the following is to adapt Rohrlich’s argument, which pur-

ports to consider an adiabatically collapsing shell, and show that Pµ
e +Pµ

coh = mevµ

for a shell that has always been stabilised at radius a by cohesive forces. In other
words, me will add to the mechanical mass, so that we could calculate the mass re-
quired for Pµ by adding the mechanical and electromagnetic masses. This is surely
the essence of Poincaré’s original considerations. Once again, Rohrlich seems to
have missed the point of the Boyer collapse model, which was to show the physical
naturalness of the usual definitions of EM field energy and momentum. What is to
be gained by considering an adiabatic collapse?

11.6.1 Model for the Ever-Stable Charged Shell

There are several simple aims here:

• To take Rohrlich’s version of Boyer’s theory and adapt it from a model for an
adiabatically contracting charge shell to a model for a charge shell that has been
stable for all time, with electromagnetic repulsion balanced by some unspecified
but exactly modelled cohesive forces (the Poincaré stresses).

• To explain explicitly how Pµ
coh + Pµ

em can be a nonzero 4-vector, in fact equal to
memvµ for some number mem.

• To compare and contrast the time integration in this approach to the one used by
Boyer in his rather different model.

We begin with the electromagnetic fields due to the charge shell, described here by
their energy–momentum tensor Θ αµ

em . In the rest frame, where it is denoted by Θ αµ
emR,

it turns out to be zero within the charge shell and Coulomb outside it. There is a step
function factor with step at r = a, where a is constant. These fields have energy and
momentum defined by an object

Pµ
em =

∫

σ
dσαΘ αµ

em , (11.217)
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where σ is a hyperplane of simultaneity in the relevant inertial frame. With the
notation established in earlier discussions, we find that, for a system S in which the
particle moves with velocity v, the electromagnetic energy and momentum are

P0
em =

∫
d3xU = γmec2

(
1+

1
3

v2

c2

)
, Pem =

∫
d3xS =

4
3

γmemv , (11.218)

where

mem =
1
c2

∫
d3xR UR =

e2

2ac2 . (11.219)

The equation for Pem is just (11.181) on p. 226, already proven there. The expression
for P0

em is proven below. In the rest frame of the charge shell, (11.218) reduces to

Pµ
emR = (mec,0,0,0) . (11.220)

The most striking thing about this result is that Pµ
em does not transform as a 4-vector

in going from one inertial frame to another. Here are the details for the calculation
of P0

em.

EM Energy Around a Charge Shell in Motion

We use the formulas (11.178) and (11.179) on p. 225, viz.,

E′ = γE− γ2

(γ +1)c2 v(v ·E) , (11.221)

B′ =
γ
c2 v×E . (11.222)

Then,

P0
em =

∫
d3x

[
1
2

ε0|E′(r)|2 +
1

2µ0
|B′(r)|2

]

=
∫

d3x

[
1
2

ε0

∣∣∣∣γE− γ2

(γ +1)c2 v(v ·E)
∣∣∣∣
2

+
1

2µ0

γ2

c4 |v×E|2
]

=
1
2

ε0γ
∫

d3xR

[∣∣∣∣E−
γ

(γ +1)c2 v(v ·E)
∣∣∣∣
2

+
1
c2 |v×E|2

]
,

where we have used the fact that E is constant in the rest frame time tR (we are
considering the static charge shell here) so that we can replace

∫

HOS
d3x−→

∫

HOS(R)

d3xR

γ
.
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We have also used the relation c2 = 1/µ0ε0.
Now note that

(v×E)·(v×E) = v2E2− (v ·E)2 , (11.223)

so
∣∣∣∣E−

γ
(γ +1)c2 v(v ·E)

∣∣∣∣
2

+
1
c2 |v×E|2 (11.224)

=
(

1+
v2

c2

)
E2 +

(v ·E)2

c2

[
γ2

(γ +1)2
v2

c2 −
2γ

γ +1
−1

]
.

Since

v2

c2 =
γ2−1

γ2 , (11.225)

we find that

γ2

(γ +1)2
v2

c2 −
2γ

γ +1
−1 =−2 . (11.226)

We now have

P0
em =

1
2

ε0γ
∫

d3xR

[(
1+

v2

c2

)
E2− 2v2

c2 E2
x

]

=
1
2

ε0γ
[

1+
v2

c2 −
2
3

v2

c2

]∫
d3xRE2

= γmemc2
[

1+
1
3

v2

c2

]
,

as claimed.
Looking at (11.218), the main conclusion is that Pµ

em is not a 4-vector. This is
anathema to Rohrlich. He says that we should not be surprised, because each ob-
server S chooses a different σ , and Pµ

em depends on σ . But could this really be a
serious argument? The whole point about Lorentz covariance, or the lack of it, is
that observers are going to use their own HOS to describe the world. In this case,
when observers use their natural σ , relations between observers are no longer go-
verned by the Lorentz transformation. Instructing them to use the same σ , e.g., the
rest frame HOS, seems a very cheap ploy indeed for ensuring ‘Lorentz covariance’.

Role of the Cohesive Forces

We now turn to the calculation of the energy and momentum Pµ
coh imparted to the

system by the cohesive forces f µ
coh which we assume to have balanced electromagne-
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tic repulsion within the shell for all time, so that it has constant radius a. Following
what was established in Sect. 11.3.3,

f 0
cohR = 0 , fcohR =−2πσ2r̂δ (r−a) , (11.227)

where

σ =
e

4πa2 , (11.228)

in the rest frame. This is just the negative of the electromagnetic 4-force density
exerted by the charge shell on itself, given as (11.162) on p. 223, viz.,

f µ
emR =

(
0,

e
4πa2 δ (r−a)

er̂
2a2

)
. (11.229)

The minus sign in the second equation of (11.227) tells us that the cohesive forces
oppose the electromagnetic ones. In these relations, a is constant. To simplify the
notation, we now drop the suffix coh on the cohesive force density. In another inertial
frame moving with constant 3-velocity −v relative to the rest frame,

f 0 = γ
(

f 0
R +

v
c
·fR

)
, f = γf‖R + f⊥R + γ

v
c

f 0
R , (11.230)

having applied the usual Lorentz transformations. (Note that Rohrlich has the sign
of the velocity wrong.) As an aside, we may ask why this cohesive 4-force density
should transform as a 4-vector. In fact, in every inertial frame, it must balance the
electromagnetic 4-force density exerted by the charge shell on itself, which is a
4-vector, because we have seen [(2.45) on p. 13] that it is given by f µ

em = Θ αµ
em ,α .

Now the rest frame components f µ
R are functions of the rest frame coordinates,

which are in turn functions of the coordinates in the moving frame. We can say

P0
coh =−

∫

V4(σ)
d4xγ

[
f 0
R
(
xR(x)

)
+

v
c
·fR

(
xR(x)

)]
. (11.231)

We can then change variables from x to xR, noting that d4x = d4xR when xR =
L−1(x), whence

P0
coh =−

∫

V4(L−1σ)
d4xRγ

[
f 0
R(xR)+

v
c
·fR(xR)

]
. (11.232)

Note that L−1σ is the same spacelike hypersurface in spacetime as σ , but it is des-
cribed in the rest frame coordinates rather than the moving frame coordinates.

We shall carry out the time integral from some large negative cutoff tR−∞ up to
the value of tR that corresponds to the hypersurface σ for the given xR. We have
to visualise σ in the (ctR,xR) plane. The x axis slopes down below the xR axis and
points (events) on it satisfy x0

R =−vx1
R/c (see Fig. 11.5).



246 11 Reconciling Energy- and Momentum-Derived EM Masses

ct

x

xR

ctR

(−a,va/c) (xR,−vxR/c)

(a,−va/c)

ctR
−∞

Electron
worldtube

1

Fig. 11.5 Electron that has always been stabilised by cohesive forces. The electron worldtube is
indicated by bold vertical lines. The integration is carried out over the region of spacetime between
the dashed lines

How do the cohesive forces contribute to the 4-momentum in this moving frame?
The contribution does not come from the cutoff, which might be viewed physically
as a repeat of the Boyer scenario. In this case, it comes from the fact that, for dif-
ferent values of xR, we include the effect of the cohesive forces up to a different time
tR. It is an artifact of the different notion of simultaneity in the moving frame. More
about this later.

Now, bearing in mind that f 0
R = 0, we find

P0
coh = −

∫

V4(L−1σ)

γ
c

d4xRv · fR

=
∫

V4(L−1σ)

γ
c

2πσ2d4xRv·r̂δ (r−a)

=
∫

r2 sinθ dθ dφ dr
∫ −vx1

R/c2

tR−∞

dtR2πσ2γvcosθδ (r−a) , (11.233)

where the polar coordinates cover the spacelike hypersurfaces in the electron rest
frame and we have used the fact that v·r̂ = vcosθ .

The time integral is easy because the integrand has no time dependence. Note,
however, that the factor δ (r− a) comes from the formula (11.227) for the force,
and we might expect a to have a time dependence for the adiabatic contraction
Rohrlich advocates. However, in the present case, we turn this into a model for the
electron that has always been stable, with constant radius a, so we do not have this
problem. This same question is better handled in Boyer’s approach, because the
force only comes into being instantaneously at some value of tR, whereafter a no
longer changes. Anyway, the time integral merely introduces a factor of



11.6 Binding Forces Revisited 247

−vxR

c2 − tR
−∞

into the integrand. The term containing tR−∞ gives zero because the integral of sin2θ
over [0,π] is zero. We can thus take the limit tR−∞ →−∞. We discuss the differences
with Boyer’s calculation for the collapsing shell below.

We now have

P0
coh = −2πσ 2γv

∫
r2 sinθ dθ dφ dr

vxR

c2 cosθδ (r−a)

= −(2π)2σ2γ
v2

c2 a3
∫ π

0
sinθ cos2 θ dθ

= −(2π)2σ2γ
v2

c2 a3
[
−1

3
cos3 θ

]π

0

= −1
3

e2

2ac2 γv2

= −1
3

meγv2 . (11.234)

Finally, we calculate

Pcoh = −
∫

V4(σ)
d4xf

= −
∫

V4(L−1σ)
d4xR

(
γf‖R + f⊥R + γv f 0

R

)

= −
∫

V4(L−1σ)
d4xR

(
γf‖R + f⊥R

)
. (11.235)

We have dropped the term in f 0
R because it is zero. Note that Rohrlich seems to have

the wrong sign for v once again and that we have dropped c. The term in f⊥R also
gives zero for the following reasons. This term contains the y and z components

−2πσ2 yR

a
δ (r−a) and −2πσ2 zR

a
δ (r−a) .

Consider the second component, and arrange to measure φ around the xR axis and
θ the angle with the xR axis. Then zR = r sinθ cosφ and the integral over φ ∈ [0,2π]
is zero. Hence,

Pcoh =−
∫

V4(L−1σ)
d4xRγf‖R . (11.236)

But,

f‖R =−2πσ2 cosθδ (r−a)
v
v

, (11.237)

so
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Pcoh = 2πσ2 v
v

∫
r2 sinθ dθ dφ dr

∫ −vxR/c2

tR−∞

γ cosθδ (r−a)dtR

= (2π)2σ2a2γ
v
v

∫
sinθ dθ

(
− v

c2 acosθ − tR
−∞

)
cosθ

= − e2

4a2
v
v

γ
[
−1

3
cos3 θ

]π

0

v
c2 a

= − e2

2ac2
γ
3

v

= −1
3

meγv . (11.238)

The final result here is therefore

P0
coh =−1

3
meγv2 , Pcoh =−1

3
meγv . (11.239)

We emphasise once again that we do not need to be concerned about a model for the
time dependence of a during adiabatic contraction, since we have assumed a charge
shell that has been stabilised by Poincaré stresses for all time. Now, in the notation

Pµ
coh = (P0

coh,Pcoh) ,

we have shown that

Pµ
coh =−1

3
meγ(v2,v) . (11.240)

It is clear that this quantity is no more a 4-vector than Pµ
em. However,

Pµ
em +Pµ

coh = γme(1,v) = mevµ . (11.241)

Note that these results give

Pµ
emR = (mec,0,0,0) , Pµ

cohR = (0,0,0,0) , (11.242)

in the rest frame. There is no net cohesive force in the rest frame, due to the sym-
metry of the charge distribution, so the cohesive forces impart no momentum to the
system, even though they have always been there, as viewed from this frame.

We are considering a spatially extended electron here, with no intention of taking
a point limit a→ 0, in contrast to Rohrlich. We studied the fact that the electroma-
gnetic energy–momentum tensor was conserved everywhere outside the charge shell
(and indeed inside it, where it was actually identically zero), but not on the shell it-
self, which meant that it could not be used to define a 4-vector 4-momentum for the
electromagnetic fields. We have now included cohesive forces in the model, which
balance the non-conservation of the electromagnetic energy–momentum tensor by
ensuring
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f µ
coh :=−∂αΘ αµ

em , (11.243)

and we have found that the 4-momentum they impart to the system, as viewed from
a general inertial frame, is

Pµ
coh :=−

∫

V4(σ)
d4x f µ

coh = +
∫

V4(σ)
d4x∂αΘ αµ

em , (11.244)

which is not a 4-vector quantity. We are pleased to find, however, that the sum of the
4-momenta from the electromagnetic field and the cohesive forces does transform
as a 4-vector. The above proof of this, which comprises quite a lengthy calculation,
does not make this result look obvious, and we must ask if there is some quicker
way of seeing that we will get a 4-vector quantity by this process.

In this context, it is worth looking at the following mistaken deduction, whereby
we seem to show that the sum Pµ

em + Pµ
coh is in fact not just a 4-vector, but actually

zero! Suppose we start with

f µ
coh +∂αΘ αµ

em = 0 ,

which was just the definition of f µ
coh, and then integrate over V4(σ) for some HOS

σ in the relevant frame. Why can we not deduce that Pµ
em + Pµ

coh is zero? The ob-
vious answer is that we should obtain a constant of integration on the right-hand
side, and this is in fact correct. But it is still not such an inane question. There ap-
pears to be something almost circular about this construction, and yet it nevertheless
yields a nonzero answer on the right-hand side. For example, it is not obvious that
the constant of integration on the right-hand side should have the Lorentz covariant
form mevµ . It is not obvious why it should not be zero, given that the last displayed
relation was the very construction of f µ

coh itself, and yet when that relation is inte-
grated over the given region it delivers up a Lorentz covariant object that perfectly
includes the electromagnetic 4-momentum for the well known electromagnetic mass
me given by the rest frame Coulomb energy in the field outside the shell.

The inadmissible step in the proposed deduction is the step that would equate

Pµ
coh =

∫

V4(σ)
d4x∂αΘ αµ

em with −
∫

σ
dσαΘ αµ

em .

Gauss’ theorem leads to this iff the integral of Θ αµ
em over the boundaries at infinity

gives zero. Let us just consider the proposed deduction in the rest frame where it is
at its simplest. In this case,

∫

σR

dσR
α Θ αµ

emR = (mec,0,0,0) ,

whereas

Pµ
cohR =−

∫

V4(σR)
d4xR f µ

cohR = 0 ,
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by symmetry of the cohesive forces in the rest frame. We can see that the integral
of Θ αµ

emR over the boundaries at infinity does not give zero in this case. Indeed, if we
write

∫

V4(σR)
d4xR∂αΘ αµ

emR = lim
t−∞→−∞

∫ tR=0(σR)

tR=t−∞
dtRd3xR∂αΘ αµ

emR , (11.245)

we shall find that this becomes, by Gauss’ theorem,
∫

σR

dσαΘ αµ
em −

∫

σ(tR=t−∞)
dσαΘ αµ

em = (mec,0,0,0)− (mec,0,0,0) ,

which is plainly zero. The point is that the surface integral over the HOS at tR = t−∞
is never zero, no matter how early t−∞ is made.

Now here is a simple explanation for why we obtain a 4-vector for the total
energy and momentum. In our earlier discussions (see Sect. 11.2.2), we saw how
a conserved energy–momentum tensor could be used to define a Lorentz cova-
riant 4-momentum, and we saw what went wrong in this venture when the energy–
momentum tensor was not conserved, for the specific case of the electromagnetic
fields outside the charge shell. The problem occurred precisely on the shell sur-
face, where the electromagnetic energy–momentum tensor was not conserved [see
(11.122) on p. 210]. By adding something that cancels ∂αΘ αµ

em precisely where the
electromagnetic energy–momentum tensor is not conserved, even though what we
add is not necessarily itself the divergence of an energy–momentum tensor, this is
tantamount to producing an object which can be used to define a Lorentz covariant
4-momentum. A little more work is needed here to show explicitly why this kind of
construction does the trick, going back to the integration theory that led to (11.122).
But we may leave it at that for our present purposes.

Note that we define the total momentum of the system to be

Pµ = Pµ
m +Pµ

em +Pµ
coh , (11.246)

where Pµ
m = mvµ is a mechanical 4-momentum associated with the particle. Hence,

what we have shown is that

Pµ = (m+me)vµ , (11.247)

which means that the electromagnetic mass merely adds to the mechanical mass.
This leaves open the possibility that the mechanical mass is zero, and that all the
inertial mass is electromagnetic. This is not the line adopted in this book. Instead
we suggest that some other field of force will provide the cohesive forces holding the
electron together, whence we would expect this field to make its own contribution
to the inertial mass. The total energy–momentum of the electromagnetic field and
this other field would be conserved, so that a Lorentz covariant 4-momentum could
be defined from it.

Finally, let us try to identify what it is that Rohrlich does not like about this
scenario. One possibility is that, since Rohrlich intends to take a point particle limit,
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this simply makes the idea of cohesive forces rather academic. His approach is to
ensure that they always contribute zero to the 4-momentum, and he does this by
redefining their contribution to the 4-momentum. He no longer uses a hyperplane of
simultaneity of the observer who considers the charge system to be moving, because
as we have seen this does not give zero. He uses a HOS in the electron rest frame,
because as we have seen this does give zero! The ploy is as simple as that. This ties
in with the application of the same ploy for the electromagnetic 4-momentum which
then gives Pµ

em = mevµ . The sum of the two 4-momenta is the same as before. This
is discussed in detail below in Sect. 11.6.3.

11.6.2 Contrast with Collapsing Shell Model

The aim here is to compare the way the time integrations are handled in Boyer’s
model and in the above, which is basically Poincaré’s version of an electron with
spatial extension. The point is that these time integrals are rather different in the two
cases.

Boyer has the following situation. The cohesive forces are switched on at time
tR = 0 in the rest frame, at all points of the shell, just when they can no longer do any
work or change the momentum, as viewed in that frame. But when all this is viewed
in the coordinates (x,ct) of a frame moving to the left, in which the charge shell
appears to be moving at speed v to the right along the x axis, the cohesive forces
come into play at different times t for different x positions of bits of the shell, and
momentum is transmitted, as far as this observer is concerned.

To do Boyer’s calculation, we draw an (x,ct) diagram (see Fig. 11.6). The ctR
axis slants off to the right from the ct axis, whilst the xR axis climbs from the x axis.
The shell is represented in this 2D diagram by two lines parallel to the tR axis, at
equal distances on either side of it. The segment of the xR axis between points

(x,ct) =
(
−γa,−γv

c
a
)

and (x,ct) =
(

γa,
γv
c

a
)

indicates the region of spacetime in which the cohesive forces become operative.
They continue to be operative for all spacetime events above this line segment which
are contained within the slanting tube that represents the charge shell. To find the
momentum imparted in this frame, we first choose any hyperplane of simultaneity
t = t∗ for t∗ > γva/c2, this condition ensuring that this observer considers the co-
hesive forces to have come into play all over the shell, whereupon she will also
consider that they balance perfectly and cease to impart any momentum to the shell.

The comments here are based on the calculation on p. 213 and following pages.
The cohesive force density is known in the electron rest frame, and Lorentz transfor-
med to the moving frame. We multiply the force density by spatial volume elements
and integrate to obtain the total force on the shell, then multiply by time elements
and integrate over time to obtain the total momentum imparted by this force. This
integration has already been carried out by the time we reach (11.132) on p. 215 and
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ct

x

xR

ctR

(−γa,−γva/c)

(γxR,γvxR/c)

(γa,γva/c)

ct∗
Electron
worldtube

1

Fig. 11.6 Boyer scenario as viewed in the moving frame. The cohesive forces are switched on
at tR = 0. The electron worldtube is indicated by bold curves. Integration is carried out over the
worldtube and between the dashed lines

it introduces the factor

γv
c2 (a− xR) .

Although we view things in the moving frame, everything gets expressed in terms
of rest frame coordinates. We were able to insert the above factor directly, because
it represents the time in the moving frame coordinates over which the force applied
at xR remains unbalanced.

Seen from the moving frame, the region of integration in spacetime is a quadri-
lateral, bounded below by the zero time HOS in the rest frame, at the sides by the
world tube of the electron, and at the top by the arbitrary HOS at t = t∗ in the moving
frame (see Fig. 11.6). For a given value of xR, the moving frame time t ranges from

γv
c2 xR to t∗ . (11.248)

The spacetime element thus covered slants in the same way as the electron world
tube with respect to the ct axis, being determined by a fixed value of xR. (It is
because the world tube slants like this that xR is a good variable to use for the
integration, even though we are working in the moving frame.) Due to the presence
of a temporal step function θ(tR) in the expression for the cohesive force density, the
range of integration mentioned here can be extended back to t =−∞ with complete
impunity. Likewise, the upper bound t∗ can be taken as any value later than γva/c2.

How does the integration range in (11.248) give us the required result, eventually
obtained in (11.133) on p. 216? We note that, in going from (11.132) to the calcula-
tion leading to (11.133), the upper bound γva/c2 has dropped out, because it gives
zero in the integration over space. The same happens to t∗. We have something like
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ct

x

xR

ctR

(−a,ct∗/γ + va/c)

(xR,ct∗/γ − vxR/c)

(a,ct∗/γ − va/c)

ct∗

Electron
worldtube

1

Fig. 11.7 Boyer scenario for collapsing charge shell as viewed in the rest frame. Cohesive forces
switched on at tR = 0. Electron worldtube is indicated by bold curves. Integration over worldtube
between dashed lines

∫ a

xR=−a
d3xR

∫ t∗

t=γvxR/c2
dt −→

∫ a

xR=−a
d3xR

(
t∗− γv

c2 xR

)

−→ −
∫ a

xR=−a
d3xR

γv
c2 xR .

In the first step, the integration over t is trivial because the integrand is independent
of t. In the second, the term in t∗ drops out when the spatial integration is done, by
symmetry. This second step is mirrored precisely by the way the term γva/c2 drops
out in going from (11.132) to the calculation leading to (11.133).

In Boyer’s own version of the calculation [23], the time integral looks like

∫ tR=t∗/γ−vxR/c2

tR=−∞
. (11.249)

Here we have an integration over the rest frame time. We can understand how the
lower limit came to be at −∞, because there is a step function at tR = 0 in the
cohesive force density, in this scenario. However, the upper limit now seems to mix
the all-important term vxR/c2 with the arbitrary t∗. This is in fact the way the rest
frame observer will view what the moving observer is doing.

We see this by drawing a new diagram (see Fig. 11.7), taking (xR,ctR) as the
orthogonal axes. The world tube of the electron is now represented by vertical lines
at equal distances on either side of the ctR axis, whilst the x axis slopes down below
the xR axis and the ct axis slants off to the left of the ctR axis as we move forward
in time. We are going to change the variables in the last integral from the hybrid
pair xR and t, with slanting elements of spacetime parallel to the ctR axis in our first
diagram, to xR and tR, with rectangular elements of spacetime still parallel to the ctR
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axis. Now the lower temporal bound is horizontal, being the intersection of the rest
frame HOS tR = 0 with the world tube, while the upper temporal bound given by
the line t = t∗ becomes, in the new integration variables, the line

ct = γ
(

ctR +
v
c

xR

)
,

where we have used the Lorentz transformation formula from the rest frame to the
moving frame. This gives

tR =
t∗
γ
− v

c2 xR

as the new equation for the straight line segment marking the future boundary of the
quadrilateral integration region. This is the upper bound we have in (11.249). The
measure dt becomes γdtR by the same Lorentz transformation rule. Since the inte-
grand has no dependence on tR for fixed xR, this integral (taken before the integral
over xR) naturally gives the same thing as before, viz.,

γ
(

t∗
γ
− v

c2 xR

)
.

The difference is that we now have the interpretation of the rest frame observer for
what the moving frame observer is doing! The rest frame observer needs to explain
why the other observer considers that some momentum is imparted to the shell.
Her explanation follows the pattern of the integration limits in (11.249): the moving
observer is taking into account the cohesive force at xR = −a from time tR = 0 to
time

tR =
t∗
γ

+
v
c2 a ,

but she is only taking into account the cohesive force at xR = +a from time tR = 0
to time

tR =
t∗
γ
− v

c2 a ,

an earlier time. This is how the rest frame observer explains why the moving obser-
ver gets a different answer.

We now contrast this integration with the one discussed in Sect. 11.6.1. The point
is once again to compare the region of integration and see how the same terms
survive despite the fact that the approach is somewhat different. Indeed, note that
we are not just looking at the same situation in a different way. The physical situation
is actually different, even though it leads to the same conclusion about the energy
and momentum of the system.

This time the cohesive forces have been there for all time and the charge shell
has always been stabilised with radius a. The moving observer chooses some HOS
σ in her frame and works out the total energy and momentum Pµ

coh imparted to the
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shell up to the time corresponding to σ in her frame. Although she is working out

Pµ
coh =−

∫

V4(σ)
d4x f µ

coh

in her frame, and all the quantities here refer to her frame, she finds f µ
coh by Lorentz

transformation of the rest frame quantity and then changes variables to the rest frame
coordinates xR. In this sense, what we get from the calculation is the rest frame
observer’s view of what she is doing, wherein we obtain an explanation of how it is
that the moving observer finds some energy and momentum imparted to the shell,
whereas the rest frame observer does not.

This is illustrated in Fig. 11.5 for the case where σ is taken to be the HOS at
t = 0 for the moving observer. This was the assumption in the calculation (11.233)
on p. 246. The time integral becomes

∫ −vxR/c2

tR−∞

dtR ,

but the integrand is constant with respect to tR so this integral is replaced by a simple
factor

−vxR

c2 − tR
−∞ .

The lower cutoff then drops out by the symmetry of the spatial integrand, leaving
only the term −vxR/c2. What is happening? According to the rest frame observer,
the moving observer is looking at the cohesive forces on different parts of the shell
up to different times (which the moving observer considers to be the same) and this
is why she calculates an overall residue of unbalanced energy and momentum. This
is an artifact of the different notion of simultaneity in the moving frame.

So what is different with the Boyer scenario? A glance at Figs. 11.7 and 11.5
shows that they are essentially the same, except that the integration region has been
shifted and/or stretched up the rest frame time axis by amounts that do not affect
the result of the integration. The reason that these differences do not affect the result
is that the spatial part of the integration removes all but one of the terms that arise
from the temporal integral. In both cases, the rest frame observer considers that the
moving observer is looking at the cohesive forces on different parts of the shell up
to different times, so the rest frame observer’s final explanation for the existence of
a nonzero Pµ

coh is the same in both cases.
What is shown in Fig. 11.6 is the explanation given by the moving observer. She

sees the cohesive forces switched on at different times in different parts of the shell.
This is, of course, different to her explanation in the ever-stable scenario, because
the cohesive forces are not switched on there, but have always been operative. So
how does the moving observer explain the fact that Pµ

coh is nonzero in her frame
in the second scenario? This is the interesting question, which might so easily be
overlooked!
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The giveaway is the horizontal cutoff at tR = tR−∞ in Fig. 11.5. This in turn raises
the question of how to calculate the integral over all early times, because it clearly
makes a difference whether we cut off at constant rest frame time, or at constant
moving frame time! In the second case, it is clear that the integrals giving Pµ

coh are
going to deliver zero! Physically, this would not be surprising, because it amounts to
applying the same cohesive forces non-concurrently to different parts of the shell as
viewed by the rest frame observer, but for the same lengths of time. In the moving
frame, the picture of this scenario is even simpler!

So why is the cutoff at constant tR the right way to deal with this? The answer is
a purely mathematical one. By cutting off the lower end of the infinite integration
region within the world tube with lines slanting at other angles, we could produce
any result for the integral! So there is a question of definition: how do we define
such an infinite integral over a region of spacetime? The answer is that we cut off
the variable covering the infinite dimension, i.e., the rest frame time in this case. To
cut off some other variable such as the moving frame time, we must first change the
variables of the integration so that one of them is indeed the moving frame time. We
would then find that we obtained the same result for Pµ

coh and not zero.

Note on the Charge Dumbbell

In Sect. 11.3.6 we noted that the discrepancy or lack of it between energy-derived
and momentum-derived EM masses displayed in Table 10.1 for the charge dumbbell
could be explained by taking into account the cohesive force required to hold the
system at a stable rest frame length d. In the light of the above discussion, the reader
will now be able to formulate that exactly.

11.6.3 The Redefinition Approach Revisited

We now come to the approach advocated by Rohrlich, which corresponds to the
second choice on p. 240. Hence, whatever the observer is doing, we use the electron
rest frame HOS tR = constant for calculations. This means that, in order to calculate
the energy and momentum of the electromagnetic fields, we take the integrals to be

P0
e :=

∫

LσR

d3σαΘ α0
e , Pk

e :=
∫

LσR

d3σαΘ αk
e . (11.250)

As mentioned before, we assume that LσR is Rohrlich’s notation for the rest frame
HOS σR as described using a moving observer’s coordinates, where L is the Lorentz
transformation from the rest frame to the observer’s frame. In this view, we have
d3σα = vα d3xR = γvα d3x.

Let us examine Rohrlich’s demonstration that



11.6 Binding Forces Revisited 257

P0
e = γme , Pk

e = γmevk . (11.251)

This is the prize. We then have a manifestly Lorentz covariant 4-momentum vector
for the electromagnetic field.

Note that the normal to LσR is the 4-velocity of the electron vµ . Hence,

Pµ
e =

∫

LσR

dσ vαΘ αµ
e , (11.252)

where dσ = d3xR, the usual measure on a spacelike hypersurface tR = constant
that would be taken as a HOS in the electron rest frame. Note also that we decree
this as part of the definition. There is something hybrid about this: we adopt the
components of the electron 4-velocity with respect to the moving frame, but we
adopt the natural measure as it would be in the rest frame HOS. This shows just
what kind of definition we are dealing with. It is one designed specifically to handle
the problem that the old definition was not Lorentz covariant.

Changing the sign of T ik as given by (2.33) on p. 11 and making the replacement
ε0 → 1/4π to accord with Rohrlich’s notation in [22], then using the fact that vα =
γ(c,−v), we have

vαΘ α0
e = γ

(
c
−v

)
·
(

U
S/c

)
= γ(U−v ·S) (c = 1) , (11.253)

and for k = 1,2,3,

vαΘ αk
e = γ

(
c
−v

)
·(k th column of Θ αk

e )

=
1

4π
γ
(

c
−v

)
·
(

4πS/c
−EE− c2BB+4πUI

)

= γ
[

S+
1

4π
v·(EE+ c2BB−4πUI)

]
, (11.254)

with a reasonably obvious if awkward notation.
If ER and BR = 0 are the rest frame fields, then the fields observed in the frame

in which the electron moves with 4-velocity vµ will be

E‖ = E‖R , E⊥ = γE⊥R , B‖ = 0 , B⊥ = γv×E⊥R . (11.255)

Superscripts ‖ and ⊥ refer to vectors parallel and perpendicular to v. These agree
with the formulas (11.178) and (11.179) on p. 225, after a little manipulation.

We shall use Rohrlich’s conventions in the following. Hence,

8πU = E2 +B2 , 4πS = E×B , (11.256)

and we define
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me :=
1

8π

∫
d3xRE2

R . (11.257)

We now have

8πU = E2 +B2 = E‖2
R + γ2E⊥2

R + γ2(v×ER)2 , (11.258)

and under the integral sign,
∫

d3xRγU =
γ

8π

∫
d3xR(E2 +B2)

=
γ

8π

∫
d3xR

[
1
3

E2
R +

2
3

γ2E2
R +

2
3

γ2v2E2
R

]

=
γ

8π

∫
d3xRE2

Rγ2
(

1+
1
3

v2
)

, (11.259)

after a little manipulation with the useful identity

v2

c2 =
γ2−1

γ2 . (11.260)

We also make heavy use of the fact that ER is spherically symmetric, which intro-
duces the factors of 1/3 and 2/3, provided we have the integration. Rohrlich takes a
short cut in his notation, writing

E‖2
R =

1
3

E2
R , E⊥2

R =
2
3

E2
R .

So we now have one of the terms in P0
e as given by (11.250) and (11.253), viz.,

∫
d3xRγU = γ3me

(
1+

1
3

v2
)

. (11.261)

We also have

4πS = (E‖R + γE⊥R )×(v×E⊥R )γ

= γ
[
(E‖R·E⊥R )v− (v ·E‖R)E⊥R + γE⊥2

R v
]

= γ2E⊥2
R v− γvE‖RE⊥R . (11.262)

The other term in P0
e is now

−
∫

d3xRγv ·S =−γ3v2

4π

∫
d3xRE⊥2

R =−4
3

γ3v2me . (11.263)

Putting together these results, the total expression for P0
e is
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P0
e =

[
γ3

(
1+

1
3

v2
)
− 4

3
γ3v2

]
me = γ3(1− v2)me = γme , (11.264)

as required.
Before continuing, it is useful to compare the present expression

P0
e =

∫
d3xRγ(U−v ·S) (11.265)

with the expression (11.11) on p. 185. In the latter case, we had

W = γ
∫

Udσ − γ
c2

∫
S ·vdσ , (11.266)

and we concluded there that dσ had to be γd3x, where d3x is the measure on a
spacelike hypersurface (in fact a HOS) of the moving frame. The reason for using
this measure was that we wanted to draw a parallel with the usual Abraham–Lorentz
calculation of the energy in the electromagnetic field. In the latter, we integrate the
quantity U over the HOS in the moving frame. However, having expressed U in
terms of the fields in the electron rest frame, as we have done above, it turns out
that the result is independent of the rest frame time tR and this allows us to rewrite
our expression as an integral over the rest frame HOS, provided that we make the
replacement γd3x→ d3xR.

This does indeed make (11.266) equal to the present expression (11.265). It also
confirms once again that Rohrlich was wrong in his 1960 paper when he wrote
γdσ = d3x. The present ploy is interesting in that we now bypass any integration
over the HOS in the moving frame, by decreeing that the integration has to be over
the rest frame HOS with its usual measure d3xR, provided of course that the inte-
grand has been suitably converted to a function of the rest frame variables.

We now calculate the 3-momentum of the electromagnetic fields according to
Rohrlich’s covariant prescription, viz.,

Pk
e =

1
4π

∫
d3xRγ

[
4πS+v·(EE+ c2BB−4πUI)

]
. (11.267)

From (11.262), we already have
∫

d3xRγS =
4
3

γ3mev . (11.268)

The second term in (11.262) integrates to zero because of the symmetry of the Cou-
lomb form of the electric field. Now note that

v·(EE+ c2BB−4πUI) = E(vE‖)−4πUv

= (E‖R + γE⊥R )E‖Rv−4πUv

= (E‖2
R −4πU)v+ term integrating to 0 .
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Hence,

1
4π

∫
d3xRγv·(EE+ c2BB−4πUI) =

1
4π

γ
∫

d3xR(E‖2
R −4πU)v

=
2
3

γmev−meγ3
(

1+
1
3

v2
)

v

= meγv
[

2
3
− γ2

(
1+

1
3

v2
)]

= meγv
[

2
3
− γ2− 1

3
(γ2−1)

]

= meγv
(

1− 4
3

γ2
)

. (11.269)

The full expression for Pk
e is therefore

Pk
e =

4
3

γ3mev+meγv
(

1− 4
3

γ2
)

= meγv , (11.270)

as required. And so we have yet another prescription for the Lorentz covariant 4-
momentum of the electromagnetic fields, and yet another proof that it is Lorentz
covariant.

There remains one item here: we calculate the momentum Pµ
coh arising due to

Rohrlich’s cohesive force

f 0
R = 0 , fR =−2πσ2r̂δ (r−a) , (11.271)

with

σ =
e

4πa2 . (11.272)

Naturally, we calculate this using Rohrlich’s prescription, whereby f 0 and f in the
moving frame are integrated over the region in the rest frame from tR = −∞ up to
the present rest frame HOS, using the measure d4xR = d4x.

We find

P0
coh = −

∫

V4(LσR)
d4x f 0

= −
∫

V4(σR)
d4xRγ( f 0

R +v · fR) = 0 , (11.273)

because of the spherical symmetry of fR. Likewise,

Pcoh = −
∫

V4(LσR)
d4xf

= −
∫

V4(σR)
d4xR

(
γf‖R + f⊥R + γv f 0

R

)
= 0 , (11.274)
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in a trivial way.
But what could these quantities possibly be? Are we considering an adiabatically

collapsing shell of charge? Surely not, because the above cohesive force is the one
for the stable electron, i.e., it has no dynamic aspect. So presumably, we are inte-
grating the cohesive force density of the stable electron here and claiming that it
contributes no four-momentum to the system. On the other hand, we cannot just
integrate these quantities over any region we like and claim that we have found the
4-momentum. Is Rohrlich’s region the right one?

11.6.4 Whatever Happened to Lorentz Covariance?

This is a brief conclusion in the form of a summary. The original question was: why
do we not get a Lorentz covariant 4-momentum from the electromagnetic fields
due to a uniformly charged shell? Ultimately, the answer is: because there are other
forces at work that have not been included in the model. Indeed, we need cohesive
forces to hold the shell together against the mutual repulsion of the charge elements
making it up. The fact that these are needed is equivalent to the fact that the energy–
momentum tensor of the electromagnetic fields is not conserved everywhere. To be
precise, it is conserved both inside and outside the shell, but not on the shell, exactly
where the balancing cohesive forces are required.

Now what goes wrong when an energy–momentum tensor is not conserved?
When it is conserved, it can be used to define a Lorentz covariant 4-momentum
for the corresponding fields in any hyperplane of simultaneity of whatever inertial
frame we are in. (What is more, this 4-momentum remains constant in the time of
that inertial frame.) But when the energy–momentum tensor is not conserved, this
standard, physically natural definition of a 4-momentum does not yield a Lorentz
covariant quantity. This is all there is to the problem.

One approach to show how the cohesive forces can save the day is to define them
directly as the forces that would be required to balance electromagnetic repulsive
forces on the sphere. Indeed, they are defined by

f µ
coh :=−∂αΘ αµ

em ,

which would be zero if the energy–momentum tensor of the electromagnetic fields
were conserved. In whatever frame we examine things, we now find that the cohe-
sive forces impart a 4-momentum Pµ

coh to the system. It happens to be zero in the
rest frame of the charge shell, but it is not Lorentz covariant. On the other hand, the
total 4-momentum due to these forces and the electromagnetic fields (the sum of the
two objects Pµ

coh and Pµ
em) is a 4-vector, and it is equal to

Pµ
coh +Pµ

em = mevµ ,
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where vµ is the 4-velocity of the shell in the given frame and me is the electroma-
gnetic mass defined from the Coulomb energy in the electric field around the shell
in its rest frame (also often referred to as the electrostatic mass).

This is, of course, a minimalist solution to the real physical problem. The idea
promoted in this book is that the electron is made up of parts with electric charge
and with some other type of charge, source of a second field that acts to hold the
thing together against the Coulomb repulsion of the charged elements. The total
energy–momentum tensor for the system will contain contributions from both types
of field and it will be conserved. The total 4-momentum of the two fields defined
in the usual way from the total energy–momentum tensor will therefore be Lorentz
covariant. The inertial mass of the system will contain contributions from both the
electromagnetic self-force and the self-force arising from the other kind of field.

This is a model in which the electron has spatial structure in any Lorentz frame.
If one assumes the electron to be a point charge, or if one wishes to take the point
limit, the cohesive forces do seem to be rather superfluous. Presumably, this is what
motivated Rohrlich to go to such lengths to defend what is actually a totally artificial
ploy for defining a Lorentz covariant 4-momentum for the electromagnetic fields.



Chapter 12
Rigidity in Relativity

In special relativity, one often speaks of rigid rods, looking at them in one iner-
tial frame or another and observing that they do not always have the same length,
despite their rigidity. This chapter is about what happens to the rod as it gets from
one inertial frame to another, i.e., as it accelerates. As we have seen the problem
is not entirely academic. When we try to model extended charge distributions and
their fields, and in particular the forces they exert upon themselves via these electro-
magnetic effects, when they are accelerating, some hypothesis must be made about
the way the charge distribution shifts around in the relevant spatial hypersurfaces
of Minkowski’s spacetime. A notion of rigidity is indeed usually applied and that
is discussed here (Sect. 12.1), in connection with frames of reference adapted to
accelerating observers in the spacetime of special relativity.

The physical legitimacy of adapted frames of reference is discussed in some de-
tail throughout the chapter, but particularly in the context of the Pound–Rebka ex-
periment in Sect. 12.1.10. The immediate aim is to elucidate the roles of what are
usually referred to as the clock and ruler hypotheses. The broader aim is to illustrate
the problems raised by relativity theory for the simple idea of treating particles as
spatially extended objects.

One would also like to consider rigid motions of any material medium in a more
general framework, even in the context of general relativity. The notion of rigidity
can be extended (Sect. 12.2) in a simple but perhaps questionable way. The aim here
will indeed be to cast a critical glance.

12.1 Rigid Rods and Rigid Spheres

12.1.1 A Toy Electron

If one wants to make a model of the electron in which the electric charge is no longer
all concentrated at a mathematical point in any spacelike hypersurface of Minkowski

Lyle, S.N.: Rigidity in Relativity. Lect. Notes Phys. 796, 263–311(2010)
DOI 10.1007/978-3-642-04785-5 12 c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 12.1 A toy electron at rest in an inertial frame. The system is in equilibrium under the forces
between A and B

spacetime, one might get the idea, exploited in the earlier chapters of this book, of
dividing the charge into two equal amounts labelled A and B, each one occupying
such a point, and spaced apart by some distance D when the system is moving
inertially and observed from an inertial frame moving with it. This would certainly
be a toy electron (see Fig. 12.1). It would appear to a large extent to defeat the object
of giving the electron a spatial extent since there are now two mathematical points of
charge instead of just one. But it does nevertheless bring out some of the advantages
and some of the difficulties. We shall only be concerned with one of the difficulties
here.

The idea of such a model is to allow it to move, then work out the electroma-
gnetic fields due to each point of charge using the Lienard–Wiechert potential, and
calculate the force that each charge can thereby exert on the other. One is of course
interested in the net force that such a system might exert upon itself when accele-
rated. In a first approach, one does not worry about the force required to hold the
system together. For it should not be forgotten that the two charges are alike and
will repel one another. And yet this very question raises another, more urgent one.

For suppose point A, on the left, has a one-dimensional motion given by xA(t)
along the axis from A to B, as observed relative to some inertial frame I (see
Fig. 12.2). What will be the motion xB(t) of the right-hand end of the system? Let
the coordinate speed of A in I be

vA(t) = ẋA(t) :=
dxA

dt
.

If the system were rigid in the pre-relativistic sense, the speed of B would be

vB(t) = vA(t) .

There is an obvious problem with this: if A and B always have the same coordinate
speed, the separation of A and B will always be the same in I , viz., D, whereas we

Fig. 12.2 System in motion in an inertial frame I . If we impose some motion on A, what is the
motion of B?

A B
D

e/2 e/2

A B

vA vB
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A B

D
√

1 − v2

A
/c2

vA(t) ≡ vA vB(t) ≡ vA

1

Fig. 12.3 System in uniform motion vA(t)≡ vA in an inertial frame I . We expect vB(t)≡ vA and
the length to be contracted as shown

expect lengths of objects to contract in special relativity when viewed from frames
in which those objects are moving.

If the system had been set in uniform motion, with A moving at constant coordi-
nate speed vA in frame I , and if it were rigid in the sense of special relativity, we

would expect the separation of A and B to be the contracted length D
√

1− v2
A/c2 as

observed from I (see Fig. 12.3). There would then be no problem for point B to
have the same coordinate speed as point A.

The difficulty occurs, of course, when vA is changing with time, i.e., when there
is acceleration, and the system has to adjust all the time. This means that vB looks as
though it might be a very complicated function of time indeed. Perhaps we require
some physical assumption about the relaxation time of the system. One immediately
wonders how B is supposed to adjust. Indeed, what are the forces on the system?
What is accelerating it? Since we started by attributing a motion xA(t) to A, we
might imagine some external force applied to A and ask how the effects of this force
might be transmitted to B to make it too accelerate. On the other hand, an external
force might equally be applied to both points, as would happen for example if it
were due to a force field. In addition, we know that there are mutually repulsive
electromagnetic forces between A and B due to their own fields, and we said there
had to be binding forces to oppose them, to hold the thing together. How will these
react to the changes?

In the pre-relativistic context, there was no problem because the appropriate no-
tion of rigidity automatically delivered the motion of point B given the motion of
point A. But this hypothesis was unequivocally pre-relativistic: if the system was
accelerated by applying a force to point A, the effects had to propagate instanta-
neously to point B, and in such a way that the net force on B was always identical.
Of course, if the system was accelerated by a uniform field acting simultaneously
on both A and B, then one had the advantage of not having to consider the binding
forces at all.

So what could be the separation of A and B as observed from I when vA(t)
changes with time? One idea is that, since A has speed vA(t), the separation of A
and B at time t could just be D

√
1− vA(t)2/c2, the contracted length for that speed.

This might be a good approximation in some cases, but there is an obvious problem
with it: because there is some contraction going on, this too will induce a motion of
B that ought to be included. And if B does not have the same speed as A, why not
use the speed of B to work out the contraction? Or some average of the speeds?



266 12 Rigidity in Relativity

Although the situation looks rather hopeless, we do appear to have an approxima-
tion. This looks especially promising if D is small. Is there some way of making D
infinitesimal and taking a limit? Let us switch to a material rod under acceleration.

12.1.2 A Rigid Rod

Of course, we know what happens to a rigid rod when it has uniform motion relative
to an inertial frame I . In other words, we know what we want rigidity to mean in
that context. But can we say how a rigid rod should behave when it accelerates? Can
we still have some kind of rigidity?

Let A and B be the left- and right-hand ends of the rod and consider motion xA(t)
and xB(t) along the axis from A to B (see Fig. 12.4). Let us first label the particles
in the rod by their distance s to the right of A when the system is stationary in some
inertial frame (see Fig. 12.5). This idea of labelling particles will prove extremely
useful when considering continuous media later on. In the present case, we imagine
the rod as a strictly one-dimensional, continuous row of particles.

Now let A have motion xA(t) relative to an inertial frame I (see Fig. 12.6) and
let X(s, t) be a function giving the position of particle s at time t as

xs(t) = xA(t)+X(s, t) ,

where naturally we require

X(0, t) = 0 , X(D, t) = xB(t)− xA(t) .

Let us require the element between s and s+δs to have coordinate length

[
1− v(s, t)2

c2

]1/2

δs , (12.1)

where v(s, t) is its instantaneous coordinate velocity, with v(0, t) = vA(t). This is
precisely the criterion suggested by Rindler [6, pp. 39–40]. We can integrate to find

Fig. 12.4 Material rod in motion along its axis in an inertial frame I . The position of the left-hand
end A is given by xA(t) at time t, and the position of the right-hand end B is given by xB(t)

A B

xB(t) − xA(t)

vA(t) vB(t)
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A B

s

Label s

1

Fig. 12.5 Stationary material rod in an inertial frame I . Labelling the particles in the rod by their
distance s from A, so that s ∈ [0,D]

A B

s
vA(t) vs(t) vB(t)

1

Fig. 12.6 Material rod with arbitrary motion in an inertial frame I

X(s, t) =
∫ s

0

[
1− v(s′, t)2

c2

]1/2

ds′ . (12.2)

This implies that

XB =
∫ D

0

[
1− v(s′, t)2

c2

]1/2

ds′ . (12.3)

Note the highly complex equation this gives for the speed function v(s, t), viz.,

v(s, t) = vA(t)+
∂X(s, t)

∂ t
. (12.4)

Let us observe carefully that we are not assuming any simple Galilean addition law
for velocities here. This is a straightforward differentiation with respect to t of the
formula for the coordinate position of atom s at time t, viz., xA(t) + X(s, t). The
partial time derivative of X is not the velocity of s relative to A, that is, it is not the
velocity of s measured in a frame moving with A.

Now (12.2) seems to embody the idea of the rod being rigid. For surely this
rod could no longer be elastic, in the sense that (12.1) only allows the element
δs to relativistically contract for the value of its instantaneous speed, forbidding
any other contortions. One could well imagine the rod undergoing a very complex
deformation along its length, in which relativistic contraction effects were quite
negligible compared with a certain looseness in the molecular bonding, but we are
not talking about this. In fact we are seeking a definition of rigidity that does not
refer to microscopic structure.

Let us just note what assumption is expressed by the earlier idea that

xB(t) = xA(t)+D
√

1− vA(t)2/c2 , (12.5)
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which would lead to

vB(t) = vA(t)− γ(vA)vA(t)ẍA(t)D/c2 , (12.6)

where γ(vA) is the usual function of the speed. Thinking of A as a kind of base
point, to which a force is perhaps applied, it says that the relativistic contraction is
instantaneous: when A moves at speed vA, the rod immediately has coordinate length
D/γ(vA) for that value of vA. We are now improving on this, accounting for the fact
that, if the adjustment takes time, that time will depend how long the rod is, and that
in turn depends on what we are trying to establish, namely the instantaneous length
of the rod. We might imagine that a signal leaves A to tell B where it should be, and
as it moves across, the speed of B is changing in response to past messages of the
same kind. But using (12.2) and (12.4), can we tell when the new signal will get
there?

12.1.3 Equation of Motion for Points on the Rod

So far the main equations for the atom labelled s on the rod are (12.2) and (12.4),
viz.,

X(s, t) =
∫ s

0

[
1− v(s′, t)2

c2

]1/2

ds′ (12.7)

and

v(s, t) = vA(t)+
∂X(s, t)

∂ t
. (12.8)

The first implies that

∂X(s, t)
∂ s

=
[

1− v(s, t)2

c2

]1/2

. (12.9)

We can write one nonlinear partial differential equation for X(s, t) by eliminating
v(s, t) to give

c2
(

∂X
∂ s

)2

+
[

∂X
∂ t

+ vA(t)
]2

= c2 . (12.10)

This is effectively the equation that we have to solve to find the length of our rod. It
is important to see that there is a boundary condition too, viz.,

0 =
∂X(s, t)

∂ t

∣∣∣∣
s=0

, (12.11)
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because we do require v(0, t) = vA(t) in conjunction with (12.8).
We shall find a solution to this problem, although not by solving (12.10) directly.

Instead we shall follow a circuitous but instructive route and end up guessing the
relevant solution.

12.1.4 A Frame for an Accelerating Observer

Let AO be the name for an observer moving with the left-hand end A of the proposed
rod. AO is an accelerating observer and it is well known [18] that such a person can
find well-adapted coordinates yµ with the following properties (where the Latin
index runs over {1,2,3}):

• First of all, any curve with all three yi constant is timelike and any curve with y0

constant is spacelike.
• At any point along the worldline of AO, the zero coordinate y0 equals the proper

time along that worldline.
• At each point of the worldline of AO, curves with constant y0 which intersect it

are orthogonal to it where they intersect it.
• The metric has the Minkowski form along the worldline of AO.
• The coordinates yi are Cartesian on every hypersurface of constant y0.
• The equation for the worldline of AO has the form yi = 0 for i = 1,2,3.

Such coordinates could be called semi-Euclidean.
Let us consider a 1D acceleration and temporarily drop the subscript A on the

functions xA(t) and vA(t) describing the motion of AO in the inertial frame I . The
worldline of the accelerating observer is given in inertial coordinates by

t = σ , x = x(σ) ,
dx
dσ

= v(σ) , (12.12)

d2x
dσ2 = a(σ) , y(σ) = 0 = z(σ) , (12.13)

using the time t in I to parametrise. The proper time τ(σ) of AO is given by

dτ
dσ

= (1− v2/c2)1/2 . (12.14)

The coordinates yµ are constructed on an open neighbourhood of the AO worldline
as follows (see Fig. 12.7). For an event (t,x,y,z) not too far from the worldline, there
is a unique value of τ and hence also the parameter σ such that the point lies in the
hyperplane of simultaneity (HOS) of AO when its proper time is τ . This hyperplane
of simultaneity is given by
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τ1

τ2

τ3

y1
y2

y1

y2

y1

y2

t

HOS(τ1)

HOS(τ2)

HOS(τ3)

1

Fig. 12.7 Constructing a semi-Euclidean (SE) frame for an accelerating observer. View from an
inertial frame with time coordinate t. The curve is the observer worldline given by (12.12). Three
hyperplanes of simultaneity (HOS) are shown at three successive proper times τ1, τ2, and τ3 of
the observer. These hyperplanes of simultaneity are borrowed from the instantaneously comoving
inertial observer, as are the coordinates y1, y2, and y3 used to coordinatise them. Only two of the
latter coordinates can be shown in the spacetime diagram

t−σ(τ) =
v
(
σ(τ)

)

c2

[
x− x

(
σ(τ)

)]
, (12.15)

which solves, for any x and t, to give σ(τ)(x, t).
The semi-Euclidean coordinates attributed to the event (t,x,y,z) are, for the time

coordinate y0, (c times) the proper time τ found from (12.15) and, for the spatial
coordinates, the spatial coordinates of this event in an instantaneously comoving
inertial frame at proper time τ of AO. In fact, every other event in this instanta-
neously comoving inertial frame is attributed the same time coordinate y0 = cτ and
the appropriate spatial coordinates borrowed from this frame. Of course, the HOS
of AO at time τ is also the one borrowed from the instantaneously comoving inertial
frame.

There is just one detail to get out of the way: there are many different instanta-
neously comoving inertial frames for a given τ , and there are even many different
ways to choose these frames as a smooth function of τ as one moves along the AO
worldline, rotating back and forth around various axes in the original inertial frame
I as τ progresses. We choose a sequence with no rotation about any space axis
in the instantaneous local rest frame. It can always be done by solving the Fermi–
Walker transport equations (see Sect. 12.2.5). The semi-Euclidean coordinates are
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then given by




y0 = cτ ,

y1 =
[x− x(σ)]− v(σ)(t−σ)√

1− v2/c2
,

y2 = y ,

y3 = z ,

(12.16)

where σ = σ(t,x) as found from (12.15). The inverse transformation, from semi-
Euclidean coordinates to inertial coordinates, is given by





t = σ(y0)+
v(y0)

c2 y1
[

1− v(y0)2

c2

]−1/2

,

x = x(y0)+ y1
[

1− v(y0)2

c2

]−1/2

,

y = y2 ,

z = y3 ,

(12.17)

where the function σ(y0) is just the expression relating inertial time to proper time
for the accelerating observer, and the functions x(y0) and v(y0) should really be
written x

(
σ(y0)

)
and v

(
σ(y0)

)
, respectively.

The above relations are not very enlightening. They are only displayed to show
that the idea of such coordinates can be made perfectly concrete. One calculates the
metric components in this frame, viz.,

g00 = 1/g00 =
[

1+
a(σ)[x− x(σ)]/c2

1− v(σ)2/c2

]2

, (12.18)

where σ = σ(t,x) as found from (12.15), and

gi0 = 0 = g0i , gi j =−δi j , i, j ∈ {1,2,3} , (12.19)

and checks the list of requirements for the coordinates to be suitably adapted to the
accelerating observer.

Although perfectly concrete, the coordinates are not perfectly explicit: the com-
ponent g00 of the semi-Euclidean metric has been expressed in terms of the original
inertial coordinates! This can be remedied as follows. One observes that, with the
help of (12.15),
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y1 = [x− x(σ)]
√

1− v2/c2 . (12.20)

One calculates the four-acceleration in the inertial frame to be

aµ :=
d2xµ

dτ2 = a(1− v2/c2)−2
(v

c
,1,0,0

)
, (12.21)

and transforms this by Lorentz transformation to the inertial frame instantaneously
comoving with the observer to find only one nonzero four-acceleration component
in that frame, which is called the absolute acceleration of the observer:

a01 := absolute acceleration = a(1− v2/c2)−3/2 . (12.22)

The notation a01 for the 1-component of the absolute acceleration will appear again
on p. 299. One now has the more comforting formula

g00 = 1/g00 =
[

1+
a01(σ)y1

c2

]2

. (12.23)

To obtain still more explicit formulas, one needs to consider a specific motion x(σ)
of AO, the classic example being uniform acceleration:

x(σ) =
c2

g

[(
1+

g2σ2

c2

)1/2

−1

]
, t = σ , (12.24)

where g is some constant with units of acceleration. This does not look like a
constant acceleration in the inertial frame:

dx
dσ

=
gσ

(1+g2σ2/c2)1/2 ,
d2x
dσ2 =

g
(1+g2σ2/c2)3/2 . (12.25)

However, the 4-acceleration defined in the inertial frame I by

aµ =
d2xµ

dτ2 , (12.26)

where τ is the proper time, has constant magnitude. It turns out that

a2 := aµ aµ =−g2 ,

with a suitable convention for the signature of the metric.
In this case, the transformation from inertial to semi-Euclidean coordinates is

y0 =
c2

g
tanh−1 ct

x+ c2/g
, (12.27)
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y1 =

[(
x+

c2

g

)2

− c2t2

]1/2

− c2

g
, y2 = y , y3 = z , (12.28)

and the inverse transformation is

t =
c
g

sinh
gy0

c2 +
y1

c
sinh

gy0

c2 , (12.29)

x =
c2

g

(
cosh

gy0

c2 −1
)

+ y1 cosh
gy0

c2 , y = y2 , z = y3 . (12.30)

One finds the metric components to be

g00 =
(

1+
gy1

c2

)2

, g0i = 0 = gi0 , gi j =−δi j , (12.31)

for i, j ∈ {1,2,3}, in the semi-Euclidean frame. Interestingly, this metric is static,
i.e., g00 is independent of y0. It is the only semi-Euclidean metric that is [4].

It is worth pausing to wonder why AO should adopt such coordinates. It must be
comforting to attribute one’s own proper time to events that appear simultaneous.
But what events are simultaneous with AO? In the above construction, AO borrows
the hyperplane of simultaneity of an inertially moving observer, who does not have
the same motion at all. AO also borrows the lengths of this inertially moving obser-
ver. But if AO were carrying a rigid measuring rod, what lengths would be measured
with it?

12.1.5 Lengths Measured by the Rigid Rod

In fact the rigid rod of Sect. 12.1.2 measures the spatial coordinates of AO when
this observer uses semi-Euclidean coordinates. Let us prove this for the case of a
uniform acceleration g, where formulas are explicit.

We write down the path of a point with some fixed spatial coordinate s along the
axis of acceleration (putting the other spatial coordinates equal to zero). The for-
mula we have for the path of the origin of the SE frame as expressed in Minkowski
coordinates is

xA(t) =
c2

g

(√
1+

g2t2

c2 −1

)
, (12.32)

giving a coordinate velocity
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vA(t) =
gt√

1+
g2t2

c2

. (12.33)

The formula for the path of the point at fixed SE spatial coordinate s from the origin
as expressed in Minkowski coordinates is

xs(t) = X(s, t)+ xA(t) =
c2

g

[√(
1+

gs
c2

)2
+

g2t2

c2 −1

]
. (12.34)

We are going to show that the function X(s, t) defined by the last relation actually
satisfies our equation of motion (12.10) in the case where the function xA(t) gives the
path of the left-hand end A of the rod, i.e., when the point A is uniformly accelerated
by g.

Proof That (12.34) Is a Solution for (12.10)

We begin with the partial derivatives:

∂X
∂ t

=
gt√(

1+
gs
c2

)2
+

g2t2

c2

− vA(t) , (12.35)

∂X
∂ s

=
1+gs/c2

√(
1+

gs
c2

)2
+

g2t2

c2

. (12.36)

Hence,
[

∂X
∂ t

+ vA(t)
]2

=
g2t2

(
1+

gs
c2

)2
+

g2t2

c2

(12.37)

and

c2
(

∂X
∂ s

)2

=
c2(1+gs/c2)2

(
1+

gs
c2

)2
+

g2t2

c2

. (12.38)

Adding the last two equations together, it is clear that we just get c2, as required by
(12.10). The boundary condition (12.11) on p. 268 is obviously satisfied too. ¥

For a rod with arbitrary 1D acceleration, the formulas are much more involved, due
to the lack of explicitness, but the proof is nevertheless straightforward. We begin
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with the worldline of a point with fixed semi-Euclidean spatial coordinate y1 = s.
Using the above formulas for the semi-Euclidean coordinates, this path is given
parametrically in Minkowski coordinates by

t = σ(y0)+
vA(y0)

c2 s
[

1− vA(y0)2

c2

]−1/2

, (12.39)

x = xA(y0)+ s
[

1− vA(y0)2

c2

]−1/2

, (12.40)

where y0 is considered to be a parameter, which can be eliminated using the first
relation to give x as a function of t. We have to be very careful about these formulas,
as usual, because xA(y0), vA(y0) are not what they seem! In fact, σ(y0) gives the
Minkowski time as a function of the proper time y0 of the observer, and xA(y0),
vA(y0) mean

xA
(
σ(y0)

)
, vA

(
σ(y0)

)
,

respectively, where xA(σ) and vA(σ) give the Minkowski coordinate path and speed
of the observer.

When we use (12.39) to express y0 in terms of s and t, something we shall only
do implicitly, and replace y0 in (12.40) by the resulting function y0(s, t), we shall
say that the left-hand side of (12.40) is our quantity X(s, t)+ xA(t). In this last ex-
pression, xA(t) really is just the function specifying the Minkowski position of the
accelerating observer, who represents the left-hand end A of our rod. Hence,

X(s, t) = xA(y0)− xA(t)+ s
[

1− vA(y0)2

c2

]−1/2

, (12.41)

where y0 = y0(s, t) is given by (12.39). Note that xA(y0) is quite different from xA(t).
We now calculate the partial derivatives:

∂X
∂ s

=

{
vA(y0)+

s
c2 vA(y0)v̇A(y0)

[
1− vA(y0)2

c2

]−3/2
}

dσ
dy0

∂y0

∂ s

+
[

1− vA(y0)2

c2

]−1/2

, (12.42)

∂X
∂ t

=

{
vA(y0)+

s
c2 vA(y0)v̇A(y0)

[
1− vA(y0)2

c2

]−3/2
}

dσ
dy0

∂y0

∂ t
− vA(t) . (12.43)

We shall keep the groups
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dσ
dy0

∂y0

∂ s
and

dσ
dy0

∂y0

∂ t
.

They are obtained by partial differentiation of (12.54). Partial differentiation of
(12.39) with respect to t gives

1 =
dσ
dy0

∂y0

∂ t

{
1+

s
c2 v̇A(y0)

[
1− vA(y0)2

c2

]−1/2

+
s
c2 v̇A(y0)

vA(y0)2

c2

[
1− vA(y0)2

c2

]−3/2
}

.

We can immediately improve this, because the last two terms in curly brackets give

s
c2 v̇A(y0)

[
1− vA(y0)2

c2

]−1/2
{

1+
vA(y0)2

c2

[
1− vA(y0)2

c2

]−1
}

=
s
c2 v̇A(y0)

[
1− vA(y0)2

c2

]−3/2

.

Hence,

dσ
dy0

∂y0

∂ t
=

1

1+
s
c2 v̇A(y0)

[
1− vA(y0)2

c2

]−3/2 . (12.44)

Differentiating (12.39) with respect to s and carrying out exactly the same manipu-
lations gives

dσ
dy0

∂y0

∂ s
=

−vA(y0)
c2

[
1− vA(y0)2

c2

]−1/2

1+
s
c2 v̇A(y0)

[
1− vA(y0)2

c2

]−3/2 . (12.45)

Now some awkward factors cancel and we have

∂X
∂ s

=
[

1− vA(y0)2

c2

]−1/2

− vA(y0)
vA(y0)

c2

[
1− vA(y0)2

c2

]−1/2

=
[

1− vA(y0)2

c2

]1/2

, (12.46)

∂X
∂ t

= vA(y0)− vA(t) . (12.47)
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It is not difficult to see now that

c2
(

∂X
∂ s

)2

+
[

∂X
∂ t

+ vA(t)
]2

= c2
[

1− vA(y0)2

c2

]
+ vA(y0)2 = c2 , (12.48)

as required to satisfy (12.10). The boundary condition (12.11) of p. 268 is satisfied
too, i.e., we have

0 =
∂X(s, t)

∂ t

∣∣∣∣
s=0

.

This follows from (12.47), because we recall that vA(y0) really means vA
(
σ(y0)

)
,

and (12.39) tells us that

σ
(
y0(0, t)

)
= t ,

as required. ¥

So not only have we found the length of our rigid rod when it is accelerating along its
own axis, but we discover that any AO with 1D motion could use it to measure semi-
Euclidean coordinates along the direction of acceleration. This means that the rigid
rod automatically satisfies what is sometimes called the ruler hypothesis, namely, it
is at any instant of time ready to measure lengths in an instantaneously comoving
inertial frame, since this is precisely the length system used by the semi-Euclidean
coordinates.

The accelerating observer would not necessarily have to be holding one end of
the rod. It could be lying with one end held fixed at some semi-Euclidean coordinate
value y1 = s1 and the other end would then remain at a constant coordinate value
y1 = s2 > s1. This is shown by exactly the same kind of analysis as above. In other
words, if the rod always manages to occupy precisely this interval on the axis of
the SE coordinate system, its length as viewed in the original inertial frame I will
satisfy the rigidity equation (12.10) on p. 268. Hence, a rigid rod whose left-hand
end is compelled to follow the worldline y1 = s1 will always appear to have the same
length s2− s1 to the SE observer.

Before taking a look at some of the remarkable features of the semi-Euclidean
coordinate frame, let us just note in passing that, to first order in the rest length D of
the rod, one finds

xB(t) = xA(t)+
[

1− vA(t)2

c2

]1/2

D+O(D2) , (12.49)

which is precisely our original approximation (12.5) back on p. 267.
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12.1.6 Properties of a Semi-Euclidean Frame

Since the notion of rigidity expressed by (12.10) fits in so nicely with the semi-
Euclidean frame of the associated observer, it is worth summarising some of the
features of these frames. We consider any point B with fixed spatial semi-Euclidean
coordinates (y1,y2,y3) = (s,0,0) and varying y0. Then we have:

• Viewed from the inertial frame I , B follows an accelerating worldline, but ge-
nerally with a different acceleration to the observer at the origin of the semi-
Euclidean frame. In the case of a uniformly accelerating observer, it turns out
that such a point also has uniform acceleration, but a smaller one than the obser-
ver at the origin, and ever smaller as s increases [see (12.89) on p. 303].

• Viewed from the inertial frame I , if B is simultaneous with the accelerating ob-
server A at the origin of the semi-Euclidean frame as judged by that observer,
i.e., A and B have semi-Euclidean coordinates (cτ,0,0,0) and (cτ,s,0,0), res-
pectively, for some τ , then they have the same 4-velocity at those two events.
Of course, they are not then simultaneous for the original inertial observer with
frame I (except at the coincident origins of the two frames). But since the ac-
celerating observer borrows the hyperplane of simultaneity of an instantaneously
comoving inertial observer, the two events in question will be simultaneous for
the latter. In other words, when an inertial observer instantaneously comoving
with A looks at B, that observer will have the same 4-velocity as B.

The first of these is not difficult to show from the definitions of the semi-Euclidean
coordinates. The second follows immediately from the expression

∂X
∂ t

= vA(y0)− vA(t) , (12.50)

which can be proven for general 1D accelerations of the observer. For then, by (12.8)
on p. 268,

vB(t) = v(s, t)

= vA(t)+
∂X
∂ t

= vA(t)+ vA(y0)− vA(t)

= vA(y0) . (12.51)

So to find the speed of B at some event on its worldline, we must draw the HOS of
the accelerating observer A which contains that event and find the proper time y0 at
which the HOS intersects the worldline of A. The point B has the speed which A had
at that proper time. If we draw the worldlines of A and B on the Minkowski diagram,
this result about their speeds tells us that any HOS through the A worldline intersects
the two worldlines at points where they have the same gradient in the Minkowski
(t,x) plane.
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12.1.7 Behaviour of a Rigid Rod

From the properties in the last section, we may deduce something about the beha-
viour of a rigid rod under acceleration, i.e., we may deduce something about what
the material points of the rod must do if the rod is to satisfy our rigidity criterion
(12.1) on p. 266.

According to the first observation, all points of the rod have different coordinate
accelerations and indeed different 4-accelerations relative to the inertial frame I
when the rod is viewed in any hyperplane of simultaneity of AO. It turns out that
all points of the rod have different 4-accelerations relative to the inertial frame I
when the rod is viewed in any hyperplane of simultaneity of I . We may deduce
that the 4-forces on different material points of the rod must always be different at
any instant of time for any inertial observer, and in a specific way that depends on
the 4-force at A.

According to the second observation, all points of the rod have the same coordi-
nate velocity and indeed the same 4-velocity relative to the inertial frame I when
the rod is viewed in any hyperplane of simultaneity of AO.

What we have then here is a rather complex system of 4-forces within the rod.
We might say that they conspire in such a way that, if AO carries one end of it
(labelled A) and uses the semi-Euclidean frame to judge simultaneity, the points of
the rod will always have the same speed relative to I . They also conspire in such a
way that the rod will always instantaneously have the right length to measure semi-
Euclidean coordinate lengths for A, which are also proper lengths for AO in the
semi-Euclidean system.

Note, however, that, apart from the first instant when the rod is at rest in I , the
rod will never have the relativistically contracted length

[
1− vA(σ)2

c2

]1/2

D (12.52)

when observed from I . Its length according to I will be the quantity X(D, t)
defined by inserting s = D in [27]

X(s, t) = xA(y0)− xA(t)+ s
[

1− vA(y0)2

c2

]−1/2

, (12.53)

where y0 = y0(s, t) is given by

t = σ(y0)+
vA(y0)

c2 s
[

1− vA(y0)2

c2

]−1/2

. (12.54)

These things are illustrated in Fig. 12.8 for the case of a uniform acceleration of
magnitude g, where explicit formulas are possible. Axes t and x are those of the
inertial frame I . Of course we have dropped two space dimensions. The rigid rod
is the four-dimensional region between the two worldlines [see (12.32) and (12.34)
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t

x
D

A xA(t) B xB(t)

Length X(D, t)
of accelerated rigid

rod at t = σ

σ

t1 = σ
(

1 +
gD
c2

)

t1 = σ
(

1 +
gD
c2

)

Relativistically contracted
inertial rod of length

[

1−
VA(σ)

2

c2

]1/2
D

Worldline of ICIO for A
at Minkowski time σ

Worldline of ICIO for B
at Minkowski time

Hyperplane of simultaneity
of ICIO for A

at Minkowski time σ

xA(σ) xB(σ)

1

Fig. 12.8 Uniformly accelerating rigid rod. Slanting dotted axes are those of the instantaneously
comoving inertial observer (ICIO) for A at Minkowski time σ or for B at Minkowski time t1 =
σ(1+gD/c2)

on p. 273]

xA(t) =
c2

g

(√
1+

g2t2

c2 −1

)

and

xB(t) =
c2

g



√(

1+
gD
c2

)2

+
g2t2

c2 −1


 .

Sloping dotted axes are those of the instantaneously comoving inertial observer
(ICIO) for A at Minkowski time σ . The hyperplane of simultaneity for this ICIO
intersects the worldline of B at an event

(
t1,xB(t1)

)
where that worldline has the

same gradient as the worldline of A at the event
(
σ ,xA(σ)

)
, i.e., the same speed

relative to I as A at the event
(
σ ,xA(σ)

)
. The Minkowski time t1 of this event on

the worldline of B is found to be

t1 = σ
(

1+
gD
c2

)
. (12.55)
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Note that, because A has the same speed relative to I at the event
(
σ ,xA(σ)

)
as

B at the event
(
t1,xB(t1)

)
, they have the same 4-velocity components relative to I ,

and hence also relative to the ICIO for A at
(
σ ,xA(σ)

)
. The two 4-velocities (of A

and B) are located at different events in spacetime, and the last conclusion follows
because the Lorentz transformation from I to the frame of the ICIO is constant in
spacetime. But if we transform the two vectors at different events by a spacetime-
dependent transformation, such as the transformation to SE coordinates, we would
not expect to end up with the the same sets of components, and indeed we do not.

Concerning the length of the rod:

• AO always considers the rod to have length D when using the semi-Euclidean
system.

• The instantaneously comoving inertial observers with A, or indeed with B, always
consider the rod to have length D, but only at the event where they are instan-
taneously comoving with A or B. As mentioned above, this is precisely what is
meant by saying that the rod satisfies the ruler hypothesis.

• The inertial observer with frame I considers the rod to have length

X(D, t) = xB(t)− xA(t) =
c2

g




√(
1+

gD
c2

)2

+
g2t2

c2 −
√

1+
g2t2

c2


 . (12.56)

• A rod represented by the 4D region between the two dotted time axes tangent to
the worldline of A at Minkowski time σ and the worldline of B at Minkowski
time t1 would have the relativistically contracted length

[
1− vA(σ)2

c2

]1/2

D

for I , but there is no such rod here.

We can see what our rod is doing in a spacetime picture, drawn in the inertial frame
in which it is originally at rest. It sweeps out a region of spacetime and we are saying
that the SE observer is using it to measure length. It would be easy to become eu-
phoric about such calculations, particularly the fact that the rigidity criterion (12.10)
is satisfied by an expression like (12.56) set up for rather different reasons. But per-
haps we should be asking what we would have to do to get the rod to move like that.
Could the SE observer just accelerate the left-hand end and let the rest of the rod
adapt somehow to what is happening via its rigidity?

After all we paid no attention to microscopic structure. If we think about the
toy electron with its two point charge components, we avoided making any detailed

12.1.8 Rigid Spheres and Instantaneous Transmission
of Motion
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r1r2

Sun

1

Fig. 12.9 Measuring stick in Schwarzschild spacetime, lying along a fixed radial coordinate inter-
val. The length is given by the usual formula L =

∫ r1
r2

dr (1− 2m/r)−1/2, where r is the Schwarz-
schild radial coordinate. But is this really the length of a measuring stick? Could a measuring stick
really have this motion? Or put another way, what would one have to do to get it to behave in this
way?

model of the binding forces. In fact, we appear to have gone a long way without
doing any real physics.

To show the generality of the problem, we find this in an elementary course on
general relativity (see Fig. 12.9) [28]:

To get a more quantitative feel for the distortion of the geometry produced by the gravita-
tional field of a star, consider a long stick lying radially in the gravitational field, with its
endpoints at the [Schwarzschild] coordinate values r1 > r2. To compute its length L, we
have to evaluate

L =
∫ r1

r2

dr (1−2m/r)−1/2 .

Since this set of points lies in a hyperplane of simultaneity for the Schwarzschild
coordinates, a Schwarzschild observer would call this the proper distance between
the two endpoints. But is it really the length of a stick? What would we have to do to
get a stick to do this? For example, none of the points of it are in free fall, so they all
have some kind of 4-acceleration, and in fact, they all have different 4-accelerations,
exactly as we have found for the accelerating rigid rod in a flat spacetime.

Of course, we cannot say whether the measuring stick in the above quote is ri-
gid until we label the material particles in it and extend our definition of rigidity
to the curved spacetimes of general relativity. A step is taken in this direction in
Sect. 12.2.7. However, it is clear that if real rods do behave like this, there must be
some physical reason for it. On the other hand, in pre-relativistic mechanics, rigidity
was always an ideal concept, at best a convenient approximation that no one would
really have expected to be possible.

One finds the same attitude in calculations of self-force on small charge distribu-
tions. This is discussed in the recent book by Yaghjian [7]. Calculations are made
for a relativistically rigid spherical shell of charge of radius a, whose center has an
arbitrary motion:

‘Relativistically rigid’ refers to the particular model of the electron, proposed originally by
Lorentz, that remains spherical in its proper (instantaneous rest) frame, and in an arbitrary
inertial frame is contracted in the direction of velocity to an oblate spheroid with minor axis
equal to 2a/γ .

This is exactly the kind of rigidity we have been talking about. Like our rod, the
sphere always has the same dimensions to the instantaneously comoving inertial
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observer. Above all, this makes it possible to carry out the self-force calculation.
Like so many approximations in physics, it is largely motivated by mathematical
convenience. Note, however, that the value of 2a/γ for the minor axis of the spheroid
is only an approximation, as we have been at pains to show [see (12.52) on p. 279].

Yaghjian goes on to say [7]:

Even a relativistically rigid finite body cannot strictly exist because it would transmit motion
instantaneously throughout its finite volume. Nonetheless, one makes the assumption of
relativistically ‘rigid motion’ to avoid the possibility of exciting vibrational modes within
the extended model of the electron.

He imputes the last remark to Pauli. But is there really any sense in which mo-
tion is transmitted instantaneously? That did seem to be the assumption with pre-
relativistic rigidity: if a force was applied to one end of a rod, the same force had
to be transmitted instantaneously to all the particles in the rod, so that all particles
would always have the same acceleration and the same speed.

Are we assuming something like this in the present case? Viewing from the iner-
tial frame I , imagine the left-hand end A of the rod as being accelerated in some
active way, whilst the rest of the rod follows suit in some sense. As the left-hand end
moves faster, the other points on the rod pick up speed too. In the case of a uniform
acceleration of A, we know that each point of the rigid rod has uniform acceleration,
but always lesser, until we come to the right-hand end B, which has the smallest
value. However, the end B eventually reaches the speed that A had some time pre-
viously. In this view of things, we may be thinking that speed somehow propagates
along the rod, with a delay that we ought to be able to calculate.

On p. 278, we showed the following result. If we consider a point xA(σ) on the
worldline of A, when it has speed vA(σ), and draw the HOS of the ICIO, this HOS
will intersect the worldline xB(t) of B at a Minkowski time t1 where vB(t1) = vA(σ).
In the case of a uniform acceleration g, where we have explicit formulas, we know
from (12.55) that

t1 = σ
(

1+
gD
c2

)
.

We therefore know how much Minkowski time is required for the speed of A to
propagate through to the other end of the rod, if indeed there is propagation, viz.,
σgD/c2. The Minkowski observer will consider that the signal, if indeed it is one,
has propagated from xA(σ) to xB(t1), so that it has travelled a distance xB(t1)−xA(s).
We can calculate this from the formulas in the last section, and the result is

xB(t1)− xA(σ) = D
(

1+
g2σ2

c2

)1/2

.

We know this anyway, because it is the projection onto the x axis of the imaginary
inertial rod mentioned earlier.

If we now divide the distance travelled by the putative signal by the time it has
taken, as reckoned in the Minkowski frame, we find the value
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D(1+g2σ2/c2)1/2

gσD/c2 = c
(

1+
c2

g2σ2

)1/2

> c (12.57)

for the speed of propagation. If speed propagates, it does so faster than light.
Is this why our rigid rod is instantaneously ready to measure lengths when acce-

lerated to a new speed? When we look back at the formulation of our equation of
motion (12.10) for the material particles making up the rod, it is clear that we ne-
ver explicitly introduced any delays. We merely hoped that the more sophisticated
model would cater for this.

Alternatively, it may be that we should not consider speed as propagating in the
rod. After all, the result (12.57) is most catastrophic when σ = 0, simply because
the two ends of the rod happen to have the same speed at the same Minkowski time.
The explanation of whatever paradox there seems to be here is more likely to be this.
When the motion begins from rest (all points of the rod being at rest when σ = 0),
each one has to instantaneously have the appropriate four-acceleration. This may be
a problem in itself, but once that is accomplished, there is no need for the speed to
propagate. Each point of the rod is subject to its appropriate four-acceleration and
so acquires the required speed locally as it were. The real problem is: how can each
point be subject to the appropriate four-acceleration. If a force is applied at one end,
it is indeed four-acceleration (or four-force, or just force) that has to take a little time
to transmit to the various points of the rod. The rod has to adjust in some way.

So could rigidity be equivalent to instantaneous transmission of four-accel-
eration? This too looks unnecessary since the rod may have been forever under-
going this motion, at least theoretically. More realistically, one could always wait
until the required distribution of four-accelerations has set itself up within the rod
and thereafter describe its motion as rigid. Yaghjian says that the assumption of
relativistically rigid motion is made to avoid the possibility of exciting vibrational
modes within the extended electron. This corresponds to the idea that, in reality,
there must always be some time of adjustment after the motion is initiated.

Let us return to the question posed at the beginning of this section, viz., could
one just accelerate the left-hand end of a rigid rod and let the rest of the rod adapt
somehow to what is happening via its rigidity? We can investigate this idea by ap-
plying the result (12.51) on p. 278. We imagine a rod that is stationary in an inertial
frame I and to which an external acceleration is applied to the left-hand end A at
some time tacc (reckoned in that frame).

On the Minkowski diagram, the worldline of A is represented by a vertical line
which we may take to be the time axis, up to t = tacc, where it begins to curve over
to the right. The hyperplanes of simultaneity of an observer moving with A are at
first horizontal, but begin to slant upwards after t = tacc, slanting up more and more
as A moves faster. This effectively determines what the right-hand end B of the rod
will do, if we recall the simple result (12.51) on p. 278. Because the rod is rigid, B
always moves with speed equal to the speed of A at the event on the worldline of A
that the instantaneously comoving inertial observer moving with A considers to be
simultaneous. So the worldline of B is clearly vertical up to the time t = tacc. But
what happens next?
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As soon as t > tacc, the relevant HOS of A through the worldline of B must be
one of those that are beginning to slant upwards, no matter how soon after tacc we
look at the worldline of B. So B will have the speed of A at a slightly earlier time (as
reckoned in the frame I ), but nevertheless at some time after tacc, when A was al-
ready accelerating. This means that B will have started moving. Its worldline curves
over to the right after tacc. It curves over more slowly, but the important thing is that
it does so immediately (in the I reckoning) after the time tacc.

We conclude that the acceleration of B is indeed instantaneous, i.e., simultaneous
with the acceleration of A in this frame. And, of course, this means that in some
other inertial frame, B will begin to accelerate before A, throwing out the idea that
the acceleration of A could be the cause of the acceleration of B. Put another way, if
one really were applying an external force only at A, one would not expect B to be
able to react for at least the time it takes light to propagate along the length of the
rod. This suggests another notion of rigidity, wherein a rigid rod is one in which the
speed of sound in the rod is equal to the speed of light [29].

Presumably this shows that one cannot expect any rod to have our kind of rigid
motion when tampered with in this way. So rigid motion is not an easy behaviour to
achieve, whatever one’s medium is made of. However, one could imagine that some
other means of accelerating the medium could result in its having rigid motion, e.g.,
applying different external forces to all particles making up the rod, perhaps by
means of a force field like gravity or electromagnetism. Indeed, the accelerations
of all particles in the rod are completely determined when it has the rigid motion
specified by the criterion (12.1) on p. 266.

The above considerations suggest that one should investigate rigid motion, rather
than rigid spheres or rods. One might then have to conclude that rigid motion cannot
strictly occur when caused by an external force applied at just one point of the
object. This would still leave open the question of motions due to fields of force. We
consider the idea of rigid motions of a general medium in Sect. 12.2.

12.1.9 Rigid Electrons and Rigid Atoms

We asked above how each point could be subject to the appropriate four-acceleration
when the rigid rod or sphere is made to move. One could envisage an interplay of
repulsive and binding forces within these objects conspiring to move each material
point in the appropriate way. It does look possible a priori. Indeed, this idea is effec-
tively applied to the spherical shell of charge in the self-force calculations discussed
by Yaghjian in his book [7]. The binding forces are precisely those required to keep
the shell of charge spherical in its proper frame.

Of course, it could be that small particles like electrons are rigid in this sense.
In any case, one has to assume something and this seems to be as convenient an
assumption as one could hope for within the framework of relativity theory. Another
small particle is the atom. In a pre-quantum model, an electron orbits a nucleus
under an electromagnetic attraction so one only has the binding force to worry about.
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Fig. 12.10 Rigid motion of a rod from one uniform velocity state to another. The rod is represen-
ted by the shaded region of the spacetime diagram. The initial velocity state continues up to the
horizontal line AB, while the acceleration occupies the region up to the slanting line CD

One might, like Bell in his paper How to Teach Special Relativity [5], treat the
nucleus as an accelerating point charge for which the exact electromagnetic potential
(the Lienard–Wiechert potential) is known from Maxwell’s theory, then calculate
the exact orbit of the electron in this field as the nucleus accelerates. In principle,
this would give a perfect description of the way the length of the atom would change
in the direction of acceleration.

One might then be forgiven for forgetting the complexity of the rigid rod with its
long string of atoms and the unfortunate way they might interfere with one another
by being bound together in some manner. One could just suppose that the way mea-
suring sticks contract is just, or should be just, if they are any good for measuring,
the way their constituent atoms contract, according to the simple idea of the last
paragraph. Would this then give us a different notion of rigidity? It certainly looks
likely on the face of it, if one could carry out precise calculations.

However, one might give the following argument for supposing the Bell atom
to be at least approximately rigid. Figure 12.10 shows our solution for accelerating
a rigid rod from one state of uniform velocity to another. During the acceleration,
the length of the rod is always the same for an instantaneously comoving inertial
observer. This is precisely what one expects for the radius of the Bell atom if the
acceleration is slow enough, i.e., if the electron gets in plenty of revolutions around
the nucleus before the acceleration ever has time to change very much. In an accurate
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calculation, one would expect to require some adjustment time, but to a certain level
of approximation, the atom will behave rigidly. This is discussed further at the end
of Sect. 12.2.7.

The aim of the second part of this discussion (Sect. 12.2) will be to consider
rigid motion in a more general context, for any material medium. We are trying
here to avoid awkward questions about how the motion is brought about, or how the
medium manages to get into or remain in a state of rigid motion.

12.1.10 A Note on the Pound–Rebka Experiment

This is just a simplified overview to identify some hidden assumptions. We imagine
an emitter E at the bottom of a tower and a receiver R at the top (in fact, iron nuclei
emitting and absorbing gamma rays). The latter is going to detect the gravitational
redshift predicted by general relativity. We may suppose that the gravitational field
is perfectly uniform here, by which we mean that there are coordinates relative to
which the metric takes the form (12.31) on p. 273. (This assumption in itself is worth
examining much more closely [4].) Of course, this spacetime is flat, i.e., there is a
global inertial frame, often called the freely falling frame. By the strong equivalence
principle, electromagnetic effects relating to E and R can be examined using the
ordinary Maxwell equations, or ordinary quantum electrodynamics, in the freely
falling frame.

In his book [14, Sect. 5.7], Brown mentions the need to assume the clock hypo-
thesis, which declares that a clock worthy of the name will measure the proper time
along whatever worldline it happens to be following. This could be taken as the de-
finition of an ideal clock, or a hypothesis, to be tested, that some particular putative
clock approximates to ideality. Let us understand this in the context of the Pound–
Rebka experiment. E emits waves that leave at precise intervals, but relative to what
time scale? The proper time associated with its worldline? If the iron nuclei used
as emitter and receiver satisfy the clock hypothesis, we would answer affirmatively
there.

As an aside, which is nevertheless quite relevant to the general ethos of this book,
we may well ask why this should be. What is the physical explanation? It is sugges-
ted here that the Bell approach may show that this is just a good approximation [5],
but that detailed calculations with the relevant theories in special relativity (this spa-
cetime is flat) or minimally extended from flat spacetime in general relativity where
necessary [12], would give a better answer. So we are suggesting that the clock
‘hypothesis’ is necessary insofar as one needs to know when the waves or photons
are emitted, but that one could also prove that this is a good approximation, so that
the only assumption needed is the assumption that one has good theories for the
emission process.

But there is already an interesting problem with identifying the emitter and recei-
ver worldlines in a global inertial frame when the tower is uniformly accelerating.
In fact, there are at least two obvious possibilities:
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Fig. 12.11 Case 1. The emitter E follows the usual hyperbola in spacetime of a uniformly accele-
rating point and the receiver R likewise, with the same uniform acceleration. With a ruler satisfying
the ruler hypothesis, E considers R to recede

1. The emitter E follows the usual hyperbola in spacetime of a uniformly accelera-
ting point and the receiver R likewise, with the same uniform acceleration, i.e.,
with the same hyperbola but shifted along the space axis (see Fig. 12.11). If E
uses semi-Euclidean (Rindler) coordinates, i.e., rigid rulers as described in this
chapter, then R recedes from it.

2. The emitter follows the usual hyperbola of a uniformly accelerating point and
the receiver likewise, but a different one, viz., the hyperbola of a point at fixed
semi-Euclidean distance from E (see Fig. 12.12). If that distance is fixed, it must
have a lower uniform acceleration.

In general relativity, which is what we are doing here (even though Brown is consi-
dering a case where one is still trying to do special relativity but finding that the
results of the Pound–Rebka experiment create a problem with the notion of inertial
frame), the emitter and receiver are accelerating because they are not being allowed
to fall freely. But should they have the same acceleration for some reason related to
the fact that the gravitional field is uniform, as in (1) above (it has zero curvature, but
then that does not tell us how strong the field is, only that there are no tidal effects,
hence no variation in it); or should they have constant spatial separation as in 2, if
indeed that is what we should mean by separation (ruler hypothesis)?

If the receiver is supported by the roof of the tower, then it is indeed the structure
of the tower that determines the motion of the receiver. In fact it is usually assumed
that the tower is rigid, i.e., case 2 above. If that is so, it is important to see that one
is assuming that the emitter and receiver have different accelerations, i.e., they are
being supported differently against the uniform gravitational field. This might look
surprising when one considers that the gravitational field is supposed to be uniform.
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Fig. 12.12 Case 2. The emitter follows the usual hyperbola of a uniformly accelerating point and
the receiver likewise, but a different one, viz., the hyperbola of a point at fixed semi-Euclidean
distance from E

But it just illustrates the fact that supporting something in a gravitational field in ge-
neral relativity introduces effects that are quite different from the gravitational field,
viz., a supporting force which causes an acceleration (while freely falling objects
have no acceleration). In fact, supporting something is a rather arbitrary thing to do
in a certain sense. The notion of supporting is just specified by saying that a thing is
not allowed to move relative to some coordinates one happens to be using, and coor-
dinates are not fundamental in general relativity. A classic case would be an object
held at some fixed values of the usual coordinates for a Schwarzschild spacetime.

So what coordinates are being used in the Pound–Rebka experiment and how
would they be set up? Presumably one wants to say that the distance between the
emitter and receiver is constant. But what distance is this? Suppose one measures
distances up the tower using a ruler held by an observer sitting with the emitter. If
it satisfies the ruler hypothesis, then it measures semi-Euclidean (Rindler) spatial
coordinates. In case 1 above, where the receiver is supported in such a way that it
has the same uniform acceleration as the emitter, the receiver would be measured
to recede according to such measurements. But if the tower is rigid (in the usually
accepted sense, discussed in this chapter) and the receiver is fixed relative to a point
of the tower, then the receiver would be considered to remain at a fixed distance
from the emitter.

The point about mentioning this is just to say that, just as one discusses the clock
hypothesis in this context, there is a similar consideration of the ruler hypothesis. If
one did measure the emitter–receiver separation with a ruler and wanted to say that
this gave the semi-Euclidean spatial coordinate (because the constancy of the sepa-
ration would allow us to do the redshift calculation in the usual way), one would
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effectively be assuming that the ruler satisfied the ruler hypothesis, i.e., that despite
the acceleration of the observer holding one end of it, it is always precisely ready
to give the proper distance of an instantaneously comoving inertial (freely falling)
observer. This is also the rigidity assumption, viz., the ruler is rigid, or at least un-
dergoing what will be called rigid motion in Sect. 12.2 of this chapter. In short, the
rigidity assumption is actually precisely the ruler hypothesis.

As an aside, it was mentioned above that there can be no such thing as a rigid
object because, if the external force is applied at one point of the object, it cannot
remain rigid. Hence the discussion of rigid motion in Sect. 12.2, without conside-
ration of how one might achieve the rigid motion of an object. But here one has a
case where one might actually achieve rigid motion, i.e., the tower might actually
be undergoing rigid motion, because the gravitational effect on it is not applied at
just one point.

In an analogous way, one assumes that the emitter and receiver satisfy the clock
hypothesis, i.e., that despite their accelerations, they emit and receive exactly as ins-
tantaneously comoving inertial emitters and receivers would. In other words, used
as clocks, they would deliver proper time as it is usually defined. Of course, proper
time is perfectly well defined in a mathematical sense along arbitrary worldlines in
special relativity, without the need to mention any clocks. The only hypothesis one
needs there in a context like this is the hypothesis that what one is actually hoping to
use as a clock does read proper time. Of course, if it did not, it would not be regarded
as a clock. What we would like to add here is Bell’s idea that one should be able to
show theoretically that any particular device is or is not a clock, or is a good or bad
approximation to a clock, and this entirely within special relativity if one is using
special relativity. The only extra assumption in the latter case is that one’s theories
about how the clock is working (e.g., electromagnetism for an electron going round
an atom, or quantum electrodynamics for a better model) are actually valid theories
in that context.

In this context nothing is really different in general relativity, except that one has
to add the strong equivalence principle in order to be able to apply non-gravitational
bits of physics when the spacetime is curved. In a certain sense one can consider
special relativity as a special case of general relativity, viewing special relativity as
general relativity with no gravitational effects (and saying, of course, that special re-
lativity treats gravity very differently when there is any gravity). Moreover, general
relativity adds nothing as far as acceleration is concerned. One can perfectly well
consider accelerating test particles in special relativity, as in general relativity. But if
some process is occurring in the particle, e.g., an electron orbiting a central nucleus,
we do not know a priori whether that process is going just as it would for an instan-
taneously comoving inertial particle of the same kind, insofar as the two processes
could be compared. It seems unlikely, but presumably a detailed calculation with the
relevant theories would allow one to estimate the discrepancy. Presumably it would
also show that the discrepancy is very small for most things we use as clocks, and
the scale of accuracy on which no physical process fits with the theoretical proper
time would be the one where we would have to admit that general relativity was
beginning to fail.
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Why do some people claim that special relativity cannot treat accelerated mo-
tions? Perhaps they are thinking, not of accelerated test particles, but accelerated
observers. The view here is that one has exactly the same problem with accelerating
observers in general relativity as in special relativity. If an observer is uniformly
accelerating in special relativity, what coordinates would this observer set up? Eve-
ryone seems to use the semi-Euclidean (Rindler) coordinates as though there were
something special about them. Of course, the observer remains at the spatial ori-
gin of those coordinates, the time coordinate is the proper time of the observer, and
other obvious things like that. But are those the coordinates the observer would set
up? If we are thinking about using clocks and rulers to set them up in a real world,
it would seem that we do not actually know. The clock and ruler hypotheses merely
assert that they would be in that context. Whether our actual physical clocks and
rulers would fit the bill is another matter.

But would general relativity help here? Of course there are nice coordinates for
any timelike worldline, in which the worldline remains at the spatial origin and the
time coordinate is the proper time, etc. But are those the coordinates that an observer
following that worldline would set up using clocks and rulers? It would seem that
we are in exactly the same situation as in the last paragraph.

Both of the above cases 1 and 2 lead to redshift. The point here is just to see that
the receiver with the same uniform acceleration as the observer will still detect a
redshift (case 1), since the other case is the standard one. Consider the situation in
the local inertial frame, which happens to be global for a uniform gravitational field.
In the spacetime diagram, we have two identically shaped curves, curving over to
the right, translates of one another along the space axis. The one on the left is the
emitter and the one on the right is the receiver. A signal from the emitter leaves it
when the emitter has a certain speed and arrives at the receiver when the receiver
has a higher speed. In this freely-falling frame view, the redshift is just a Doppler
shift. (To apply this analysis in the general relativistic case considered here, where
we have a uniform gravitational field, we are of course also assuming the strong
equivalence principle.) The only difference in case 2 is that the shape of the receiver
worldline in the spacetime diagram for a freely falling observer is different from the
shape of the emitter worldline, because it curves over more slowly (lower proper
acceleration).

The redshift calculation for case 2 can be found in [4, Sect. 15.6] along with a
critical discussion of the way semi-Euclidean coordinate systems are interpreted.
Case 1 here is straightforward in the freely falling frame. The worldlines of E and R
are (see Fig. 12.13)

xE(t) =
c2

g

[(
1+

g2t2

c2

)1/2

−1

]
, (12.58)

as in (12.24) on p. 272, and xR(t) = xE(t)+κ , for some constant κ . The two world-
lines have the same shape, because they have the same uniform acceleration, by
hypothesis 1. Then
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Fig. 12.13 Calculating the redshift in case 1. The emitter E emits a signal at time temit which
is received by the receiver R at time trec. The two worldlines have the same shape. The receiver
worldline is identical to the emitter worldline but shifted a distance κ along the space axis. By the
time the signal reaches the receiver, the receiver worldline has curved over due to the increasing
speed of the receiver

vE(t) =
gt

(1+g2t2/c2)1/2 = vR(t) . (12.59)

To get the redshift, imagine a light signal sent from the worldline of E at time temit
and find the time of reception trec on the worldline of R. Find the apparent relative
velocity

v := vR(trec)− vE(temit) = vE(trec)− vE(temit) , (12.60)

and plug it into the usual special relativistic formula for the Doppler shift. If z is the
redshift, then

1+ z =
(1+ v/c)1/2

(1− v/c)1/2 . (12.61)

Interestingly, the result is much less elegant than in the standard case 2. However, it
is easy to show that

z≈ gκ/c2 , (12.62)

for small κ , i.e., the same result as for case 2. On the other hand, for large κ , the two
results will obviously differ. What is not obvious is whether experimental accuracy
could yet distinguish the two cases.
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12.2 Rigid Motion

This section is based on the discussion of rigid motions in B.S. DeWitt’s Stanford
lectures on relativity [15]. These lectures (to be published by Springer) deal at some
length with the problem of continuous media in the context of curved spacetime. The
ideas below extend naturally to general relativity, but we consider a flat spacetime
for the presentation below.

12.2.1 General Motion of a Continuous Medium

The component particles of the medium are labeled by three parameters ξ i, i =
1,2,3, and the worldline of particle ξ is given by four functions xµ(ξ ,τ), µ =
0,1,2,3, where τ is its proper time. In general relativity, the xµ may be arbitrary
coordinates in curved spacetime, but here we assume them to be standard coordi-
nates of some inertial frame.

If ξ i +δξ i are the labels of a neighbouring particle, its worldline is given by the
functions

xµ(ξ +δξ ,τ) = xµ(ξ ,τ)+ xµ
,i(ξ ,τ)δξ i ,

where the comma followed by a Latin index denotes partial differentiation with res-
pect to the corresponding ξ (DeWitt’s notation). Note that the quantity xµ

,i(ξ ,τ)δξ i,
representing the difference between the two sets of worldline functions, is formally
a 4-vector, being basically an infinitesimal coordinate difference. However, it is not
generally orthogonal to the worldline of ξ . In other words, it does not lie in the
hyperplane of simultaneity of either particle.

To get such a vector one applies the projection tensor onto the instantaneous
hyperplane of simultaneity:

Pµν = ηµν + ẋµ ẋν ,

where the dot denotes partial differentiation with respect to τ , and we note that in
general relativity the projection tensor takes the form

Pµν = gµν + ẋµ ẋν ,

with gµν the metric tensor of the curved spacetime. The result is

δxµ := Pµ
ν xν

,i(ξ ,τ)δξ i . (12.63)

One finds that application of the projection tensor corresponds to a simple proper-
time shift of amount

δτ = ηµν ẋµ ẋν
,iδξ i ,



294 12 Rigidity in Relativity

so that

δxµ = xµ(ξ +δξ ,τ +δτ)− xµ(ξ ,τ) .

Indeed,

xµ(ξ +δξ ,τ +δτ) = xµ(ξ ,τ)+ xµ
,iδξ i + ẋµ δτ ,

and feeding in the proposed expression for δτ , we do obtain precisely δxµ as defined
above.

What can we conclude from this analysis? The two particles ξ and ξ +δξ appear,
in the instantaneous rest frame of either, to be separated by a distance δs given by

(δs)2 = (δx)2 = γi jδξ iδξ j , (12.64)

where

γi j = Pµν xµ
,ix

ν
, j . (12.65)

DeWitt calls the quantity γi j the proper metric of the medium.

12.2.2 Rigid Motion of a Continuous Medium

At this point, one can introduce a notion of rigidity. One says that the medium
undergoes rigid motion if and only if its proper metric is independent of τ . This is
therefore expressed by

γ̇i j = 0 . (12.66)

Under rigid motion the instantaneous separation distance between any pair of neigh-
bouring particles is constant in time, as they would see it. Note that this criterion is
independent of the coordinates used because γi j is a scalar.

Let us see whether this coincides with the notion of rigidity discussed earlier, i.e.,
whether the rigid rod of Sect. 12.1.2 is DeWitt rigid, or put differently, whether the
rod described in Sect. 12.1.2 is undergoing rigid motion according to the criterion
(12.66). DeWitt’s ξ correspond to s in Sect. 12.1.2 (see p. 266). In a given inertial
frame, particle s has motion described by X(s, t), where

∂X
∂ s

=
1
γ

, γ = γ
(
v(s, t)

)
,

and

v(s, t) = vA(t)+
∂X
∂ t

,
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where vA(t) is the speed of the end of the rod. Suppose we now change to a frame
moving instantaneously at speed v(s, t) and measure the distance between particle
s and particle s + δs as viewed in this frame. Will it be constant in this model, as
required for DeWitt rigid motion? In the original frame where both particles are
moving, we have separation

X(s+δs, t)−X(s, t) =
∂X
∂ s

δs =
δs
γ

.

In the new frame moving at speed v(s, t), this has length

γ
δs
γ

= δs = constant .

This is what DeWitt rigid motion requires.

12.2.3 Rate of Strain Tensor

The aim here is to express the rigid motion condition γ̇i j = 0 in terms of derivatives
with respect to the coordinates xµ by introducing the relativistic analog of the rate
of strain tensor in ordinary continuum mechanics.

The non-relativistic strain tensor can be defined by

ei j :=
1
2

(
∂u j

∂xi
+

∂ui

∂x j

)
,

where ui(x) are the components of the displacement vector of the medium, descri-
bing the motion of the point originally at x when the material is deformed. One also
defines the antisymmetric tensor

ωi j :=
1
2

(
∂u j

∂xi
− ∂ui

∂x j

)
,

which describes the rotation occurring when the material is deformed. Clearly,

ei j−ωi j =
∂ui

∂x j
,

and hence, if all distortions are small,

∆ui = (ei j−ωi j)∆x j .

We can consider that ei j describes non-rotational distortions, i.e., stretching, com-
pression, and shear.
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In the present discussion, ui is replaced by a velocity field vi and we have a rate
of strain tensor. The non-relativistic rate of strain tensor is

ri j = vi, j + v j,i , (12.67)

where vi is a 3-velocity field and the differentiation is with respect to ordinary Carte-
sian coordinates. Let us look for a moment at this tensor. The nonrelativistic condi-
tion for rigid motion is

ri j = 0 everywhere .

This equation implies

0 = ri j,k = vi, jk + v j,ik , (12.68)

0 = r jk,i = v j,ki + vk, ji . (12.69)

Subtracting (12.69) from (12.68) and commuting the partial derivatives, we find

vi, jk− vk, ji = 0 , (12.70)

which, upon permutation of the indices j and k, yields also

vi,k j− v j,ki = 0 . (12.71)

Adding (12.68) and (12.71), we obtain

vi, jk = 0 ,

which has the general solution

vi =−ωi jx j +βi , (12.72)

where ωi j and βi are functions of time only. The condition ri j = 0 constrains ωi j to
be antisymmetric, i.e.,

ωi j =−ω ji ,

and nonrelativistic rigid motion is seen to be, at each instant, a uniform rotation with
angular velocity

ωi =
1
2

εi jkω jk

about the coordinate origin, superimposed upon a uniform translation with velocity
βi. Because the coordinate origin may be located arbitrarily at each instant, rigid
motion may alternatively be described as one in which an arbitrary particle in the
medium moves in an arbitrary way while at the same time the medium as a whole
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rotates about this point in an arbitrary (but uniform) way. Such a motion has six
degrees of freedom.

Note that when ri j is zero, we can also deduce that vi,i = 0, i.e., divv = 0, which
is the condition for an incompressible fluid. This is evidently a weaker condition
than rigidity.

Let us see how this generalises to special relativity. We return to the continuous
medium in which particles are labelled by ξ i, i = 1,2,3. Just as the coordinates xµ

are functions of the ξ i and τ , so the ξ i and τ can be regarded as functions of the xµ ,
at least in the region of spacetime occupied by the medium. Following DeWitt [15],
we write

uµ := ẋµ , u2 =−1 , Pµν = ηµν +uµ uν .

If f is an arbitrary function in the region occupied by the medium then

f,µ = f,iξ i
,µ + ḟ τ,µ ,

where the comma followed by a Greek index µ denotes partial differentiation with
respect to the coordinate xµ . We also have

ẋ · ẍ = 0 or u · u̇ = 0 ,

since u2 =−1, and

uµ uµ
,ν = 0 , u̇µ = uµ ,ν uν , uµ uµ

,i = 0 ,

xµ
,iξ

i
,ν + ẋµ τ,ν = δ µ

ν ,

ξ i
,µ xµ

, j = δ i
j , ξ i

,µ ẋµ = 0 ,

τ,µ xµ
,i = 0 , τ,µ ẋµ = 1 ,

Pµν ẋν
,i = Pµν uν

,i = uµ,i .

We now define the rate of strain tensor for the medium:
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rµν := γ̇i jξ i
,µ ξ j

,ν

=
(

Ṗστ xσ
,ix

τ
, j +Pστ ẋσ

,ix
τ
, j +Pστ xσ

,iẋ
τ
, j

)
ξ i

,µ ξ j
,ν

= (u̇σ uτ +uσ u̇τ)(δ σ
µ −uσ τ,µ)(δ τ

ν −uτ τ,ν)

+uτ,iξ i
,µ(δ τ

ν −uτ τ,ν)+(δ σ
µ −uσ τ,µ)uσ , jξ j

,ν

= u̇µ uν +uµ u̇ν + u̇µ τ,ν + τ,µ u̇ν

+uν ,µ − u̇ν τ,µ +uµ,ν − u̇µ τ,ν

= uµ ,σ uσ uν +uµ uσ uν ,σ +uν ,µ +uµ,ν

= P σ
µ P τ

ν (uσ ,τ +uτ ,σ ) .

This is to be compared with (12.67) to justify calling it the rate of strain tensor. At
any event xµ , it lies entirely in the instantaneous hyperplane of simultaneity of the
particle ξ i that happens to coincide with that event.

Note in passing that this generalises to curved spacetimes. We define

rµν := γ̇i jξ i
,µ ξ j

,ν , (12.73)

as before, noting that it is a tensor, since γi j, γ̇i j, ξ i and ξ j are scalars under change of
coordinates. At any x, there are coordinates such that gµν ,σ

∣∣
x = 0, whence covariant

derivatives with respect to the Levi-Civita connection are just coordinate derivatives
at x, and it follows immediately that

rµν = P σ
µ P τ

ν (uσ ;τ +uτ;σ ) , (12.74)

where semi-colons denote covariant derivatives and Pµν is given by

Pµν = gµν + ẋµ ẋν ,

for metric gµν .
Returning now to the context of special relativity, the result

rµν := γ̇i jξ i
,µ ξ j

,ν = P σ
µ P τ

ν (uσ ,τ +uτ,σ ) (12.75)

expresses the rate of strain tensor in terms of coordinate derivatives of the four-
velocity field of the medium. We now characterise relativistic rigid motion by

rµν = 0 , γ̇i j = 0 . (12.76)

Once again, we observe that the criterion for rigid motion, viz., rµν = 0, is inde-
pendent of the coordinates, because rµν is a tensor, even in a curved spacetime.
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12.2.4 Examples of Rigid Motion

The next problem is to find some examples. We choose an arbitrary particle in the
medium and let it be the origin of the labels ξ i. The problem here is to choose these
labels smoothly throughout the medium. Let the worldline xµ(0,τ) of the point ξ i =
0 be arbitrary (but timelike). We now introduce a local rest frame for the particle,
characterized by an orthonormal triad n µ

i (τ) :

ni ·n j = δi j , ni ·u0 = 0 , u2
0 =−1 , u µ

0 := ẋµ(0,τ) .

We now assume that the worldlines of all the other particles of the medium can be
given by

xµ(ξ ,τ) = xµ(0,σ)+ξ in µ
i (σ) , (12.77)

where σ is a certain function of the ξ i and τ to be determined. On the left, τ is the
proper time of the particle labelled by ξ . To achieve a relation of this type, given τ
and ξ , we must find the unique proper time σ of the particle ξ = 0 such that the point
xµ(ξ ,τ) is simultaneous with the event xµ(0,σ) in the instantaneous rest frame of
the particle ξ = 0. Then the label ξ i for our particle is defined by the above relation.
There is indeed an assumption here, namely that these ξ i really do label particles.
That is, if we look at events with the same ξ i but varying τ , we are assuming that
we do follow a single particle. It is unlikely that all motions of the medium could be
expressed like this, but we can obtain some rigid motions, as we shall discover.

To determine the function σ(ξ i,τ), write

uµ = ẋµ(ξ ,τ) = (u µ
0 +ξ iṅ µ

i )σ̇ ,

all arguments being suppressed in the final expression. Here and in what follows, it
is to be understood that dots over u0 and the ni denote differentiation with respect to
σ , while the dot over σ denotes differentiation with respect to τ .

In order to proceed further, one must expand ṅi in terms of the orthonormal tetrad
u0,ni :

ṅ µ
i = a0iu

µ
0 +Ωi jn

µ
j . (12.78)

The coefficients a0i are determined, from the identity

ṅi ·u0 +ni · u̇0 = 0 ,

to be just the components of the absolute acceleration of the particle ξ = 0 in its
local rest frame [see an example in (12.22) on p. 272]:

a0i = ni · u̇0 , (12.79)

and the identity
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ṅi ·n j +ni · ṅ j = 0

tells us that Ωi j is antisymmetric:

Ωi j =−Ω ji .

We now have

uµ =
[(

1+ξ ia0i
)
u µ

0 +ξ iΩi jn
µ

j

]
σ̇ .

But

−1 = u2 =−
[(

1+ξ ia0i
)2−ξ iξ jΩikΩ jk

]
σ̇2 ,

whence

σ̇ =
[(

1+ξ ia0i
)2−ξ iξ jΩikΩ jk

]−1/2
. (12.80)

The right hand side of this equation is a function solely of σ and the ξ i. Therefore the
equation may be integrated along each worldline ξ = const., subject to the boundary
condition

σ(ξ ,0) = 0 .

We shall, in particular, have the necessary condition

σ(0,τ) = τ .

Note that the medium must be confined to regions where

(
1+ξ ia0i

)2
> ξ iΩikξ jΩ jk (≥ 0) . (12.81)

Otherwise, some of its component particles will be moving faster than light.
We can now calculate the proper metric of the medium. We have

ni ·u =−Ωi jξ jσ̇ , (12.82)

xµ
,i = n µ

i +(u µ
0 +ξ jṅ µ

j )σ,i = n µ
i +uµ σ̇−1σ,i ,

uµ xµ
,i =−Ωi jξ jσ̇ − σ̇−1σ,i ,
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γi j = Pµν xµ
,ix

ν
, j

= δi j−Ωikξ kσ, j−Ω jkξ kσ,i− σ̇−2σ,iσ, j

+
(
Ωikξ kσ̇ + σ̇−1σ,i

)(
Ω jlξ lσ̇ + σ̇−1σ, j

)

= δi j + σ̇2ΩikΩ jlξ kξ l

= δi j +
ΩikΩ jlξ kξ l

(
1+ξ ma0m

)2−ξ nξ rΩnsΩrs
, (12.83)

using the above expression (12.80) for σ̇ .
From this expression we see that there are two ways in which the motion of the

medium can be rigid:

• All the Ωi j are zero.
• All the Ωi j and all the a0i are constants, independent of σ .

In the second case the motion is one of a six-parameter family, with the Ωi j and the
a0i as parameters. DeWitt refers to these special motions as superhelical motions.
One example, constant rotation about a fixed axis, is discussed in Sect. 12.2.6. Let
us first consider the case where all the Ωi j are zero.

12.2.5 Rigid Motion Without Rotation

Saying that the Ωi j are all zero amounts to saying that the triad n µ
i is Fermi–Walker

transported along the worldline of the particle ξ = 0. Let us see briefly what this
means.

If u0(σ) is the 4-velocity of the worldline, the equation for Fermi–Walker trans-
port of a contravector Aµ along the worldline is

Ȧµ = (A · u̇0)u0− (A ·u0)u̇0 . (12.84)

This preserves inner products, i.e., if A and B are FW transported along the world-
line, then A ·B is constant along the worldline. Furthermore, the tangent vector u0
to the worldline is itself FW transported along the worldline, and if the worldline is
a spacetime geodesic (a straight line in Minkowski coordinates), then FW transport
is the same as parallel transport.

Now recall that the Ωi j were defined by

ṅ µ
i = a0iu

µ
0 +Ωi jn

µ
j . (12.85)

When Ωi j = 0, this becomes

ṅ µ
i = a0iu

µ
0 . (12.86)
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This is indeed the Fermi–Walker transport equation for n µ
i , found by inserting A =

ni into (12.84), because we insist on ni ·u0 = 0 and we have a0i = ni · u̇0 [see (12.79)
on p. 299].

In fact, the orientation in spacetime of the local rest frame triad n µ
i cannot be

kept constant along a worldline unless that worldline is straight (we are referring to
flat spacetimes here). Under Fermi–Walker transport, however, the triad remains as
constantly oriented, or as rotationless, as possible, in the following sense: at each
instant of time σ , the triad is subjected to a pure Lorentz boost without rotation in
the instantaneous hyperplane of simultaneity. (On a closed orbit, this process can
still lead to spatial rotation of axes upon return to the same space coordinates, an
effect known as Thomas precession.) For a general non-Fermi–Walker transported
triad, the Ωi j are the components of the angular velocity tensor that describes the
instantaneous rate of rotation of the triad in the instantaneous hyperplane of simul-
taneity.

Of course, given any triad n µ
i at one point on the worldline, it is always possible

to Fermi–Walker transport it to other points by solving (12.84). We are then saying
that motions that can be given by (12.77), viz.,

xµ(ξ ,τ) = xµ(0,σ)+ξ in µ
i (σ) , (12.87)

where the ξ i are assumed to label material particles in the medium, are rigid in the
sense of the criterion given above.

Furthermore, the proper geometry of the medium given by the proper metric γi j
in (12.65) on p. 294 is then flat, i.e.,

γi j = δi j .

We also note that (σ ,ξ i) are the semi-Euclidean coordinates for an observer with
worldline xµ(0,σ), moving with the base particle ξ = 0. This generalises the
construction of Sect. 12.1.4 to the case of a general 3D acceleration.

What we are doing here is to label the particle ξ i by its spatial coordinates ξ i in
the semi-Euclidean system moving with the particle ξ = 0. Geometrically, we have
the worldline of the arbitrarily chosen particle O at the origin, viz., xµ(0,σ), with
σ its proper time. We have another worldline xµ(ξ i,τ) of a particle P labelled by ξ ,
with proper time τ . For given τ , we seek σ such that xµ(ξ i,τ) is in the hyperplane
of simultaneity of O at its proper time σ . Then (ξ i) is the position of P in the tetrad
moving with O. Indeed, {ξ i} are the space coordinates of P relative to O in that
frame.

As attested by (12.82) on p. 300, we also have

ni ·u = 0 , (12.88)

so that the instantaneous hyperplane of simultaneity of the particle at ξ = 0 is an
instantaneous hyperplane of simultaneity for all the other particles of the medium
as well, and the triad n µ

i serves to define a rotationless rest frame for the whole
medium. In other words, the coordinate system defined by the particle labels ξ i
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may itself be regarded as being Fermi–Walker transported, and all the particles of
the medium have a common designator of simultaneity in the parameter σ . In the
semi-Euclidean system, σ is taken to be the time coordinate.

Put another way, (12.88) says that the ni(σ) are in fact orthogonal to the worldline
of the particle labelled by ξ i at the value of τ corresponding to σ . This happens
because u(ξ ,τ) = u0(0,σ). In words, the 4-velocity of particle ξ at its proper time
τ is the same as the 4-velocity of the base particle when it is simultaneous with the
latter in the reckoning of the base particle (quite a remarkable thing).

Because σ is not generally equal to τ , however, it is not possible for the particles
to have a common synchronization of standard clocks. The relation between σ and
τ is given by (12.80) on p. 300 as

σ̇ =
(
1+ξ ia0i

)−1
.

We can thus find the absolute acceleration ai of an arbitrary particle in terms of a0i
and the ξ i :

ai = ni · u̇ = ni · ∂u
∂σ

σ̇ = σ̇ni · ∂
∂σ

[(
1+ξ ja0 j

)
u0σ̇

]

= σ̇ni · u̇0

=
a0i

1+ξ ja0 j
. (12.89)

Here we have used the fact that u =
(
1 + ξ ja0 j

)
u0σ̇ = u0. We see that, although

the motion is rigid and rotationless in the sense described above, not all parts of the
medium are subject to the same acceleration.

It is important to note that, when we find ξ i and σ , they constitute semi-Euclidean
coordinates (adapted to ξ = 0) for the point xµ(ξ ,τ) whether or not that point fol-
lows a particle for fixed ξ . What we have here are material particles that follow all
these points with fixed ξ , for a whole 3D range of values of ξ .

In these coordinates, the metric tensor takes the form

g00 =
∂xµ

∂σ

∣∣∣∣
ξ

∂xν

∂σ

∣∣∣∣
ξ

ηµν = u2σ̇−2 =−(1+ξ ia0i)2 ,

gi0 = g0i =
∂xµ

∂ξ i

∣∣∣∣
σ

∂xν

∂σ

∣∣∣∣
ξ

ηµν = (ni ·u)σ̇−1 = 0 ,

gi j =
∂xµ

∂ξ i

∣∣∣∣
σ

∂xν

∂ξ j

∣∣∣∣
σ

ηµν = ni ·n j = δi j ,

which has a simple diagonal structure. We note that this metric becomes static, i.e.,
time-independent, with the parameter σ playing the role of time, in the special case
in which the absolute acceleration of each particle is constant. This should be com-
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pared with (12.18) and (12.19) on p. 271, and also (12.23) on p. 272 (but note that
the sign convention for the metric has been reversed).

We conclude that this rigid motion possesses only the three degrees of freedom
that the particle ξ = 0 itself possesses. The base particle ξ = 0 can move any way it
wants, but the rest of the medium must then follow in a well defined way.

12.2.6 Rigid Rotation

The simplest example of a medium undergoing rigid rotation is obtained by choo-
sing

a0i = 0 , Ω12 = ω , Ω23 = 0 = Ω31 .

The worldline of the particle at ξ = 0 is then straight, but the worldlines of all the
other particles are helices of constant pitch. We have

σ̇ =
{

1−ω2[(ξ 1)2 +(ξ 2)2]}−1/2

and the proper metric of the medium takes the form

(
γi j

)
=




1+(σ̇ωξ 2)2 −(σ̇ω)2ξ 1ξ 2 0

−(σ̇ω)2ξ 1ξ 2 1+(σ̇ωξ 1)2 0

0 0 1


 .

Relabelling the particles by means of three new coordinates r,θ ,z given by

ξ 1 = r cosθ , ξ 2 = r sinθ , ξ 3 = z , (12.90)

the proper metric of the rotating medium takes the form

diag
(

1,
r2

1−ω2r2 ,1
)

.

Indeed, we have

σ̇2 =
1

1−ω2r2 ,

whence
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γrr =
∂ξ i

∂ r
∂ξ j

∂ r
γi j

= cos2 θ
[
1+(σ̇ωr)2 sin2 θ

]−2(σ̇ωr)2 sin2 θ cos2 θ

+sin2 θ
[
1+(σ̇ωr)2 cos2 θ

]

= 1 ,

γrθ = γθr =
∂ξ i

∂ r
∂ξ j

∂θ
γi j

= −r sinθ cosθ
[
1+(σ̇ωr)2 sin2 θ

]− r(σ̇ωr)2 sinθ cos3 θ

+r(σ̇ωr)2 sin3 θ cosθ + r sinθ cosθ
[
1+(σ̇ωr)2 cos2 θ

]

= 0 ,

γrz = γzr =
∂ξ i

∂ r
∂ξ j

∂ z
γi j = 0 ,

γθθ =
∂ξ i

∂θ
∂ξ j

∂θ
γi j

= r2 sin2 θ
[
1+(σ̇ωr)2 sin2 θ

]
+2r2(σ̇ωr)2 sin2 θ cos2 θ

+r2 cos2 θ
[
1+(σ̇ωr)2 cos2 θ

]

= r2[1+(σ̇ωr)2] = r2
(

1+
ω2r2

1−ω2r2

)
=

r2

1−ω2r2 ,

γθz = γzθ =
∂ξ i

∂θ
∂ξ j

∂ z
γi j = 0 , γzz =

∂ξ i

∂ z
∂ξ j

∂ z
γi j = 1 .

In terms of these coordinates the proper distance δs between two particles separated
by displacements δr, δθ , and δz therefore takes the form

δs2 = (δr)2 +
r2

1−ω2r2 (δθ)2 +(δz)2 .

We are merely applying (12.64) on p. 294 for the new particle labels. This gives the
distance of one particle as reckoned in the instantaneous rest frame of the neighbou-
ring particle. The second term on the right of this equation may be understood as
arising from relativistic contraction. At first sight, it may look odd to find that, when
a disk of radius r is set spinning with angular frequency ω about its axis, so that ra-
dial distances are unaffected by relativistic contraction, distances in the direction of
rotation contract in such a way that the circumference of the disk gets reduced to the
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value 2πR
√

1−ω2R2. It appears to contradict the Euclidean nature of the ordinary
3-space that the disk inhabits! DeWitt describes this as follows [15]:

What in fact happens is that, when set in rotation, the disk must suffer a strain that arises for
kinematic reasons quite apart from any strains it suffers on account of centrifugal forces.
In particular, it must undergo a stretching of amount (1−ω2r2)−1/2 in the direction of
rotation, to compensate the Lorentz contraction factor (1−ω2r2)1/2 that appears when the
disk is viewed in the inertial rest frame of its axis, thereby maintaining the Euclidean nature
of 3-space. It is this stretching factor that appears in the proper metric of the medium.

Let us try to put this more explicitly. Suppose A and B are two neighbouring par-
ticles at distance R from the centre and with labels θ and θ + δθ . When the disk
is not rotating, the proper distance between them as reckoned by either in its ins-
tantaneously comoving inertial frame (ICIF) is Rδθ . When the disk is rotating, the
expression for γi j tells us that the proper distance between them in the new ICIF will
increase to Rδθ/(1−ω2R2)1/2. Seen by an inertial observer moving with the centre
of the disk, this separation will thus be Rδθ , as before, and there will be no contra-
diction with the edicts of Euclidean geometry. This shows that the matter between
A and B is stretched in the sense of occupying a greater proper distance as judged
in an ICIF moving with either A or B.

There is a direct parallel with the two accelerating rockets mentioned at the be-
ginning of Bell’s well known paper How to Teach Special Relativity [5]. The sepa-
ration of A and B seen by an inertial observer moving with the centre of the disk is
unchanged when the rotation gets under way, so their proper separation is greater,
leading to a strain which DeWitt claims to be due to kinematic reasons. If the disk
could somehow be made of a very fragile material already stretched to its limit in
the inertial frame moving with the center of the disk, it would shatter under rota-
tion, just as the fragile thread joining Bell’s two accelerating rockets was doomed to
break.

The above discussion does assume that θ labels the material particles! And this
follows from the relations in (12.90) and the fact that ξ 1,ξ 2,ξ 3 label the particles. It
would be easy to miss this point. There remains therefore the question as to whether
any association of material particles could have, or is likely to have this motion.

We note that the medium must be confined to regions where r < ω−1 and that its
motion will not be rigid if ω varies with time. There are no degrees of freedom in
this kind of (superhelical) motion: once the medium gets into superhelical motion,
it must remain frozen into it if it wants to stay rigid. We note also that the proper
geometry of the medium is not flat, i.e., γi j 6= δi j.

12.2.7 Rigid Motion in Schwarzschild Spacetime

As an example in a curved spacetime, let us show that a medium in which particles
are labelled by Schwarzschild coordinates ξ := (r,θ ,φ) is in rigid motion. The me-
tric, displayed as a matrix, is
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(gµν) =




−c2B(r) 0 0 0
0 B(r)−1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ


 , B(r) := 1− A

r
,

where A := 2GM/c2 is the usual constant. The motion we have in mind is described
by the four functions

x0(ξ ,τ) = t , x1(ξ ,τ) = r , x2(ξ ,τ) = θ , x3(ξ ,τ) = φ ,

following the general scheme set out at the beginning of Sect. 12.2.1. It is then a
very simple matter indeed to show that [27]

γi j = gi j , i, j ∈ {1,2,3} ,

and also

γ̇i j = 0 .

This is all rather obvious and it is easy to see how to obtain a host of rigid motions
in curved spacetimes where the metric has a static form. Alternatively, one can cal-
culate the rate of strain tensor rµν of (12.74) on p. 298, and it is a trivial matter
to show that rµν = 0. So any medium in which the particles could be labelled by
the Schwarzschild space coordinates is undergoing a rigid motion according to this
criterion.

Let us think back briefly to the short quotation from a standard textbook pre-
sentation on p. 282. In fact it is interesting to see how that account continues with
regard to the related question of proper distance [28]:

Note that the [increment in the] proper radius R of a two-sphere [centered on the singula-
rity], obtained from the spatial line element by setting θ = const., φ = const., is

dR = (1−2m/r)−1/2dr > dr . (12.91)

In other words, the proper distance between spheres of radius r and radius r+dr is dR > dr,
and hence larger than in flat space.

It is intriguing to wonder what the last comment means. For this is not really a
comparison with any spheres in flat space. The coordinate interval dr need not be at a
point where the spacetime is even approximately flat. The so-called proper distance
is something that is related to the coordinate r in this way. In fact, the quoted relation
(12.91) is telling us how to understand the coordinates.

As an aside, we have the same kind of pedagogical difficulty in the following,
still in the context of the Schwarzschild metric [28]:

Let us consider proper time for a stationary observer, i.e., an observer at rest at fixed values
of r,θ ,φ . Proper time is related to coordinate time by

dτ = (1−2m/r)1/2dt < dt . (12.92)

Thus clocks go slower in a gravitational field.



308 12 Rigidity in Relativity

But they go slower than what? Of course, this is a neat inequality and very simple.
But does it really tell us that the clock is going slower than the same clock in flat
spacetime? It does not seem so. dt is a coordinate change at a place where r 6= ∞ and
spacetime is not flat. The above relation tells us how to understand the coordinate
t at the relevant point, provided that we understand how to interpret proper time as
given by the metric.

Now a rod permanently occupying [r1,r2] would be undergoing rigid motion,
and so would a rod permanently occupying [r′1,r

′
2]. But we do not yet know whether

there is some motion of the points making up the rod occupying [r1,r2] that could
serve as a transition of the same rod from the unprimed to the primed state. It seems
likely that one could find a DeWitt rigid motion making the transition from [r1,r2]
to [r′1,r

′
2] if and only if the proper lengths (rather than the coordinate lengths) are the

same, and indeed it is not difficult to give a heuristic argument. It is worth drawing
the analogy with a rod in Minkowski (flat) spacetime when it is accelerated from
one state of constant velocity to another, as illustrated by the 4D region shaded in
Fig. 12.10 (see p. 286). In fact, we have a similar problem here to the one discussed
in Minkowski spacetime: we may know, or assume, that the proper length of a rod
will be different for a given inertial observer I when it moves at different constant
velocities relative to I , but we do not have a theory for what it will look like in the
transition between the two velocity states.

In the usual special relativistic discussion, rigid means suitably contracted in
one uniform velocity state as compared with the other, but we do not usually try
to say what rigid means during the transition between the states. In Fig. 12.10, the
rod, initially in one velocity state, then under acceleration, then in the final velocity
state, is represented by the shaded 4D region. The proposal in this chapter is just one
proposal, i.e., we have found a possible solution for the motion during the transition,
but it is not based on any microscopic theory of the atomic structure of the rod.

Rigid motion is a natural enough notion, but what of a microscopic theory? There
is a clear parallel with the discussion of the acceleration of an atom in Minkowski
spacetime, as discussed by Bell [5] and mentioned in relation to Fig. 12.10 on
p. 286. When Bell’s (pre-quantum) atom is accelerated slowly enough, we expect
it to contract in exactly the way proposed for Fig. 12.10, i.e., so that it always has
the same radius to the instantaneously comoving inertial observer. Slowly enough
just means that many periods of the electron orbit fit in before the acceleration has
changed the velocity very much.

What about a Bell atom in Schwarzschild spacetime? In fact, a version of the
equivalence principle shows that, if an atom has radius ratom in flat spacetime, then
when held fixed at the value R of the Schwarzschild radial coordinate in such a way
that the plane of the electron orbit contains the Schwarzschild radial direction, it
will have Schwarzschild coordinate radius [12]

(
1− A

R

)1/2

ratom (12.93)
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as viewed in the hyperplane of simultaneity of the Schwarzschild observer; whence
its proper radius will still be ratom in the hyperplane of simultaneity of the SO. This
is seen as follows. One finds coordinates {zµ} at R such that an atomic nucleus
fixed at R is at the origin zµ = 0 and instantaneously has speed zero relative to these
coordinates, and such that

gz
µν

∣∣∣
z=0

= ηµν , Γz
µ
νσ

∣∣∣
z=0

= 0 .

Assuming that the electron orbits at small enough radius and with short enough
period relative to the curvature, a standard rather strong version of the equivalence
principle says that it will behave relative to these coordinates like an atom in flat
spacetime for a certain number of orbits, e.g., following a circular orbit with radius
ratom and the same period as in flat spacetime too. When we transform this orbit
to the Schwarzschild coordinate description, we find the Schwarzschild coordinate
radius (12.93).

By this kind of argument, the strong equivalence principle shows that a thing like
an atom, or a rod made of a row of such atoms (without worrying about how binding
forces affect it), always measures proper length in whatever hyperplane of simulta-
neity it is observed, provided that it is instantaneously stationary there relative to the
relevant coordinates, where proper length is the quantity usually obtained from the
metric, and usually just assumed without further discussion to represent the lengths
of such real (if ideal) physical objects. One might say that, wherever it is, whatever
it is doing, this kind of atom or rod always measures proper lengths if used cor-
rectly. The last proviso just refers to the fact that the atom must be instantaneously
stationary relative to suitable coordinates.

Is there a link with rigidity as we have been describing it? Are these Bell atoms
rigid? It looks as though they are. Such an atom can sit at constant Schwarzschild
space coordinates and have constant coordinate radius. Moved elsewhere, if moved
slowly enough, its Schwarzschild coordinate radius changes in such a way that its
proper radius in the hyperplane of simultaneity of the SO is roughly constant, just
like the above infinitesimal rod subjected to an approximate DeWitt rigid motion.

As an aside, the Schwarzschild coordinates arise in a purely mathematical way in
many presentations of this metric, by solving Einstein’s equations, and no attempt is
made to associate some physical counterpart with them. Although the notation may
be suggestive, the discussion after the solution should perhaps address the question:
how do we now relate these coordinates to what we measure? Furthermore, one
should perhaps also ask why clock readings and measuring stick readings corres-
pond the way they do to our coordinates, bearing in mind what a measuring stick
must do to lie quietly between the points r1 and r2 with all its atoms under different
4-accelerations. What principle of the theory are we applying?

The above idea of a rigid rod (measuring stick) in Schwarzschild spacetime is
thus that we can support it in the gravitational field in such a way that the 4D region it
sweeps out crosses any Schwarzschild plane of simultaneity in the fixed coordinate
interval from r1 to r2. The term ‘support’ covers up for some complex continuum
of different 4-forces on its various atoms. Perhaps we can just hold one end of it
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at r1, say, and let the internal forces within the rod do the rest naturally. According
to the above analyses, the material of such a rod would indeed be undergoing rigid
motion if all particles in the rod could be labelled by constant Schwarzschild space
coordinates. This would then be a rigid rod, quite analogous to the one discussed for
an accelerating observer.

It seems that our measuring sticks have to be like this for the theory to have a
practical application, and the principle hiding away here is (a version of) the equi-
valence principle.

12.3 Conclusion

Rigid rods are commonly referred to in the special theory of relativity. In a certain
sense they hardly need to be rigid. If one is moving inertially with a rigid rod, it has
length L, and if one then changes to another inertial motion, it has another length L′
which is shorter than L. Nothing is required of the rod here.

One does not even have to be present in this scenario. In the paradigm provided
by the general theory of relativity, one just has to adopt coordinates. It does not
matter what the observer is doing, only what coordinates he or she may adopt. In
this view, the new length of the rod is just an illusion, not caused by anything real.
The proper length depends on the choice of spacelike hypersurface used to intersect
the essentially 4D spacetime region occupied by the rod.

This is not the view described by Bell [5]. The relationship between observer and
rod, or between coordinate frame and rod, in which one moves relative to the other,
can be achieved in another way, namely, by accelerating the rod. The observer does
not have to do anything. The rod is accelerated and one would like to say that as
a consequence the particles making it up adjust their relationship to one another in
such a way that the rod becomes shorter as judged by the observer. There is even a
theory for this: Maxwell’s theory of electromagnetism.

In this view, rigidity would just be something like the assumption that there are
no transient oscillatory effects during or after acceleration, or that such effects can
be neglected. It would seem that the notions of rigidity discussed here are an ap-
proximation of this kind.

Put another way, rigidity is a constraint on the motion of (the particles within) a
measuring stick that allows one to say exactly what is happening to it when it makes
the transition from one uniform velocity state to another (in flat spacetime). Bell
was considering just such a transition in his paper [5], but using the microphysical
theory provided by Maxwell, which is presumably more realistic. The aim here is
to draw attention to the fact that the rigidity constraint is artificial, and show that the
standard, often uncritically interpreted semi-Euclidean coordinate system adapted to
the worldline of an accelerating observer (in flat spacetime) fundamentally uses this
constraint, and hence remind us that we ought to be wary of non-inertial coordinate
systems (see also [4]).
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The distinguishing feature of special relativity, when it is considered as a spe-
cial case of general relativity, is that there are preferred frames of reference adapted
to observers with inertial motion. However, even in special relativity, there are no
preferred frames of reference adapted to accelerating observers. If they know the
theory, they may as well adopt inertial coordinates (relative to which they accele-
rate, of course). One may nevertheless wonder what such people would measure
with a measuring stick, or with the kind of (pre-quantum, non-radiating) atom des-
cribed by Bell [5]. If the acceleration is not too great, one expects the Bell atom
to adjust rather quickly, whereas the rigid rod described in Sect. 12.1 (accelerated
along its axis) adjusts immediately for any acceleration to measure proper length
in the instantaneously comoving inertial frame of the observer, i.e., in the spacelike
hypersurface borrowed from an instantaneously comoving inertial observer. In other
words, the rigid rod satisfies what is usually known as the ruler hypothesis.

Something like the clock and ruler hypotheses are necessary to interpret the
Pound–Rebka experiment. This is used as an example to illustrate the idea that one
should be wary of naive interpretations of appealing coordinate systems, which of-
ten involve assumptions of this kind in a covert way.

In a curved spacetime, one expects to find a rigid motion of a rod between two
states if and only if the two states correspond to the same proper length relative to
suitably adapted frames. Once again, an atom of the type described by Bell would
provide an approximation.



Chapter 13
Mass in Elementary Particle Physics

The aim in this chapter is to examine the way inertial mass is handled in elemen-
tary particle physics. Only a superficial knowledge of this subject and the related
quantum theory will be needed. The discussion is very much based on the superb
account in [10], but another excellent reference here is [32], which fills in literally
all the details concerning the various symmetry considerations prevalent in particle
physics.

13.1 Energy and Mass

Everyone knows that E = mc2. Literally everyone. This seems to be telling us that
inertial mass is just another form of energy. And indeed we convert it to energy to
run factories and make bombs, with typical human vigour. It seems a very neat and
practical result, but where did it come from? In his refreshing and idiosyncratic book
Theoretical Concepts in Physics, Longair provides the following fast track [30].

We have discovered the special theory of relativity, and conceive of it as a study in
invariance. That is to say, we set out to build mathematical objects that are invariant
under Lorentz transformations. So we have a Minkowski spacetime with its metric,
and we come to consider the problem of dynamics. We have seen the beauty of
the four-velocity, expressed as U := (γc,γu) in some inertial frame, where u is the
coordinate three-velocity in that inertial frame.

Now if we wish to get something like what we used to call momentum, the ob-
vious thing to do is to look at the four-component object

P := m0U , (13.1)

where m0 is the mass. Actually, we are already forced to call m0 the rest mass,
because with hindsight we know that the inertial mass, or the inertia, of a particle
increases as it moves faster. This is the very thing we hope to understand by the
theory we are developing right now. The point about (13.1) is that P will be a four-
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vector provided that m0 is a constant. This statement in turn means something about
how to represent P when we look at it from another inertial frame of reference. It
means that m0 will be the same and the components (γ ′c,γ ′u′) will be got from the
components (γc,γu) by a suitable Lorentz transformation.

Another good thing about (13.1) is that at least some of it corresponds approxi-
mately to something we used to call momentum. The three last components look
just like the usual three-momentum when v ¿ c, because then γ ≈ 1. But keep an
eye on that first component, tagging along so discretely.

One senses a certain unease in Longair’s account which is fully justified. After
making this definition on what one might describe as purely theoretical grounds,
he immediately reminds us that there is a proviso for calling P a suitable four-
momentum: this must agree with experiment. One is as yet somewhat at a loss to
know how an experiment could come in at this early stage, but the warning is well
taken. Definitions are fine, but experiment is the final judge of their usefulness.

So we have

P := (γm0c,γm0u) , (13.2)

and we call p := γm0u the relativistic three-momentum (γ times the Newtonian
three-momentum) and γm0 the relativistic inertial mass. Once again, we are remin-
ded that we have not proved that γm0 is really the right measure of inertia. We can
certainly call it the inertial mass, but that may not necessarily be a good name for it.
We need to check that a force on a moving particle will give it less three-acceleration
than the same force when it was stationary, and in the proportions provided by the
theory. We need to do experiments.

But first we require a force four-vector. By analogy with Newtonian dynamics,
we make the hypothesis that the four-vector generalisation of Newton’s second law
of motion should be

F =
dP
dτ

, (13.3)

where τ is the proper time of the particle, generally used to parametrise its worldline.
The right-hand side is a four-vector, because τ is an invariant. Longair asks how we
should relate the force we measure in the laboratory with F , as though F were
somehow defined by (13.3), but it seems better to treat this relation as a hypothesis
and just ask what F should be. For example, for a charge e moving in a magnetic
field, what are the four components of F?

One of the questions in the air here concerns a possible conservation law, and
Longair notes that, in a collision between two particles which initially have four-
momenta P1 and P2, it might turn out that

P1 +P2 = P3 +P4 ,

where P3 and P4 are their final four-momenta. One would call this conservation
of four-momentum. Experimentally, one would have to check componentwise, i.e.,



13.1 Energy and Mass 315

check that

p1 +p2 = p3 +p4 , m1 +m2 = m3 +m4 ,

where the first relation is about the relativistic three-momenta, not the Newtonian
ones, so it contains factors of γ , and the second is about relativistic inertial masses,
also containing γ factors.

We shall be particularly interested in that second relation, but what about the
first? We make the suggestion that

f =
dp
dt

=
d
dt

(γm0u) , (13.4)

with t the coordinate time in the given inertial frame, might be the normal three-
force measured in the laboratory. This is the crucial hypothesis. Longair asks whe-
ther this definition is good enough in relativity. However, it is not a definition. It
may certainly look like one on the face of it, but when one replaces f by eu×B, for
example, where B is a magnetic field and e the electric charge of the particle, one is
making a prediction about experimental results.

A better question here is perhaps: does it accurately predict experimental results?
And indeed Longair immediately asks this question, although once again one senses
a certain embarrassment that there is nothing like a mathematical proof. He provides
a heuristic argument regarding Newton’s third law (of action and reaction), but even
that has to appeal to experiment. In conclusion to this brief and searching paragraph
(what makes Longair’s book interesting is that it really is searching), the author
reminds us that relativistic dynamics cannot come out of pure thought. The best we
can do is make it logically self-consistent, and also consistent with experiment (up
to present levels of accuracy).

But of course, what gets left out of the textbooks of any age are precisely the
pointers that guided the early explorers through the dark territory between the pre-
vious theory and the new theory. Indeed, the textbooks often neglect even to say
what problem those explorers were trying to solve. They simply deal in logical
self-consistency and consistency with experiment, giving the distinct impression
that what came before, including the struggle to arrive at this new theory, can be
promptly forgotten.

But this is not the place to go into historical detail (something much more difficult
to do accurately than many scientists would imagine). Let us just say that, if one
had calculated the momentum in the EM fields of a charged particle moving with
constant velocity, and if one had had the idea that the momentum of the charge
might simply be the momentum of its EM fields, and that its inertial mass might just
be what we called the electromagnetic mass in Chap. 3, then one would be trying to
engineer a factor of γ into the mass and the momentum [see, for example, (3.24) on
p. 37]. This was one of the pointers, according to Feynman in [2, Sect. 28.3] (which
is not an ordinary textbook).

For the moment, let us see what the hypothesis (13.4) delivers, following Lon-
gair’s account. If A is the four-acceleration dU/dτ , then as in (13.3), we would like
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to extend the hypothesis to

F = m0A , (13.5)

which is comforting for those who seek continuity with past ideas. But note that
F = (γ f4,γf) for some f4 that we have not specified. If f is going to be things like
eu×B in an electromagnetic context, what should f4 be? It looks as though this
remains open, but it does not if we make the hypothesis that F = m0A. Let us see
why.

Since U2 = c2 is constant (U2 means the usual scalar product of U with itself in
the Lorentz pseudometric), it follows that

U · dU
dτ

= 0 ,

which in turn means that U ·A = 0. So we also have F ·U = 0 for any F that satisfies
our equation of motion (13.3) or (13.5). But then

F ·U = 0 ⇐⇒ γ f4γc = γ2f ·u

⇐⇒ f4 =
f ·u

c
,

so what we must choose for f4 is completely determined by our proposed law of
motion (13.5).

However, (13.4) is not the only content of this law. The first component of (13.5)
tells us that

γ f4 =
d(m0γc)

dτ
,

and since dt/dτ = γ , this means that

f4 = c
dm
dt

,

where m := m0γ is the putative relativistic inertial mass. So if we have f4 = f ·u/c,
we must have

d(mc2)
dt

= f ·u (13.6)

The quantity f ·u is the rate at which work is done on the particle by the force f,
i.e., the rate of increase of energy of the particle, so mc2 is identified with the total
energy of the particle. Longair describes this as the formal proof that E = mc2.

But nobody would claim that, from here, one could immediately make a hy-
drogen bomb. That ‘experiment’ is several large steps away from this ‘proof’. In-
deed, we ask in this chapter: what does the above argument actually prove? Longair
concludes from (13.6) that there is a certain amount of inertial mass associated with



13.1 Energy and Mass 317

the energy produced when work is done. That is indeed what is being laid down by
(13.3) [or its alternative version (13.5)], because (13.4) replaces the constant inertial
mass m0 of Newtonian theory by the function m := m0γ(u) of the speed u, and this
means precisely that a force on a moving particle will give it less three-acceleration
than the same force when it was stationary.

We turn the above reasoning – what Longair calls a study in invariance – into
a bold hypothesis. It does not matter what the form of the energy is. It could be
electrostatic, magnetic, kinetic, elastic, or any other, in Longair’s own words. All
energies are the same thing as inertial mass. Then reading the equation backwards,
still in Longair’s own words, we conclude that inertial mass is energy, and that
nuclear explosions are vivid demonstrations of this identity. Hopefully, the reader
will agree that this is hypothesis, the stuff of science, and not proof.

It is hypothesis, and with a good dose of definition in it too. The m on the left-
hand side of (13.6) is a very different thing to m0, because we absorbed γ into it.
Since u < c, we can expand the function γ(u) as a series in powers of u/c to obtain

m = m0γ(u) = m0

(
1+

1
2

u2

c2 +
3
8

u4

c4 + · · ·
)

,

or put another way,

mc2 = m0c2 +
1
2

m0u2 +
3
8

m0
u4

c2 + · · · . (13.7)

The first term here is optimistically called rest mass energy, although it seems unli-
kely that the pioneers really expected to get energy out of it in the early days, and
the second term is the old kinetic energy. So we have simply fed the kinetic energy
into our mc2 on the left-hand side of (13.6). There are of course the remaining terms,
which are part of the boldness of the hypothesis. But the real innovation here seems
to be (13.4), because it says that everything on the right-hand side of (13.7) contri-
butes to the inertia of the particle.

One of the themes of this book is that we do not understand inertia, i.e., that there
is something to be understood and that we have not found it yet. And here is the spe-
cial theory of relativistic dynamics telling us that m is the measure of the particle’s
inertia, and not m0. There must be a message here for those who seek to unders-
tand why particles resist being accelerated, and in different proportions depending
on their nature and circumstances. But the usual attitude is one of instrumentalism,
as Popper called it [31]. The theory is simply required to be empirically adequate,
in the sense of being well-supported by evidence or by the measure of its predictive
success.

Having established (13.3) as the best, possibly even the only way to play the
Lorentz invariance game, we then simply apply it and note that it works. Here,
surely, is a missed opportunity. We did not know why Newton’s law had the form
F = ma, and now that we find exactly how we have to adjust this to get it in line
with the principles of relativity, we do not ask why the dynamical law still has the
form (13.3), even though we have learnt something quite significant about what
contributes to inertia.
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13.2 Bound State Particles

There are two kinds of particle, although both kinds are often referred to out of habit
as elementary particles. Some particles, like electrons, neutrinos, and quarks, are
generally considered not to be made up of anything smaller (although not always),
so they are truly elementary, if that is the case. They are effectively treated as point
particles, even in quantum field theory, and this leads to a need for renormalisation,
as we have seen in the pre-quantum context. Naturally, in the pre-quantum view,
it would be difficult to model them as extended in space and yet not made up of
anything smaller, but in quantum theory, there are wave functions, and this changes
our conceptions.

The other kind of particle is the bound state, which includes things like the pro-
ton, currently conceived of as a bound state of three quarks, or the π mesons, cur-
rently taken to be quark–antiquark bound states. This section is about these. It is
based on the superb textbook [10] by Griffiths. We shall skate over things, exami-
ning only what is relevant to inertia.

13.2.1 Generalities

We can pick up from where we left off in Sect. 13.1. The total energy, hence inertia,
of a composite system is a sum of three contributions:

• The rest energy of the constituents.
• The kinetic energy of the constituents.
• The potential energy of the configuration.

The latter two are usually comparable in size, as confirmed by the famous virial
theorem, which has its classical and quantum counterparts. There is a good rule
of thumb here. When the binding energy, as given by the potential energy of the
configuration, is much less than the rest energies of the constituents, so too will be
their kinetic energies. In this case, one can often assume that the motions of the
constituents will be non-relativistic (speeds much less than c). But when the mass
of the composite structure is significantly greater than the sum of the rest masses of
the constituents, one expects the kinetic energies also to be significant, whence the
motions of the constituents are likely to be relativistic.

It is easier to analyse bound states when the constituents have non-relativistic
speeds, because then one can apply the simpler theory of non-relativistic quantum
mechanics. The classic example in QM textbooks is the hydrogen atom, considered
as made up of a proton and an electron. But any baryon or meson made up of heavy
quarks like c, b, or t may also succumb to this treatment. The problems come with
the light quarks, u, d, and s. Then only quantum field theory can give realistic results.
But therein lies another difficulty, because quantum field theory usually assumes that
the particles it deals with are free before and after some brief interaction, and that is
not at all what we have in mind when we consider bound states.
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The binding energy of a hydrogen atom is 13.6 eV, a small figure compared with
the rest energy of an electron, which stands at 511 000 eV, so the system is non-
relativistic, and it is well known that excellent models can be made by solving a
non-relativistic Schrödinger equation, and then tweaking the results to account for
relativistic corrections, spin–orbit coupling, and minor perturbations of this kind.
A first rate overview of this standard material can be found in [10], and the main
results are listed qualitatively in the next section. We also have a very good theory
of charmonium, a cc bound state, often called the ψ meson, and bottomonium, the
bb bound state, or ϒ meson. But the excited states of uu or dd, easier to produce in
the accelerator, are much more difficult to treat theoretically.

Looking at what contributes to the total energy of the bound state particle, we
recall the idea in the last section that these three features will also contribute to
the inertia of this entity. Hopefully, the reader will realise that there is a big step
from the dynamical requirements of symmetry under Lorentz transformations as
outlined there to the bold hypothesis that the kinetic energy and binding energy of
the subparticles have to be added (suitably divided by c2) to the inertial mass of the
whole. Some may feel that the symmetry route to this hypothesis is not persuasive,
but of course, the key thing for others may merely be to reach the hypothesis and
see if it works.

13.2.2 From Hydrogen to Positronium

Let us just see for the record what we know about the hydrogen atom, a bound state
of a proton and an electron:

• In a first, non-relativistic approximation, we find that there are energy levels

En =−α2mc2

2n2 =−13.6
n2 eV , n ∈ Z+ , (13.8)

where α = e2/h̄c≈ 1/137 is the fine structure constant.
• Each of the levels except n = 1 is degenerate, meaning that there are many states

with energy En. For given n, there are n states labelled by integers l ranging from
0 to n−1, where this label specifies the orbital angular momentum, and for each
value of l there are 2l + 1 states labelled by integers ml ranging from −l to +l,
where this label specifies the component of the orbital angular momentum in
some previously chosen direction, so the degeneracy of the n th level is

n−1

∑
l=0

(2l +1) = n2 .

All the rest of the theory of the hydrogen atom is concerned with showing that
there is in reality no degeneracy.
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• There is a relativistic correction, obtained by recalling that the kinetic energy of
a particle with three-momentum p is not p2/2m but

Trel =
p2

2m
− p4

8m3c2 + · · · ,

whence we add a lowest order relativistic correction

∆Hrel =− 1
8m3c2 p4

to the main Hamiltonian and apply perturbation theory. The states specified by
quantum numbers n and l now have energies shifted by an amount

∆Erel =−α4mc2 1
4n3

(
2n

l +1/2
− 3

2

)
. (13.9)

This is a very small correction. The Bohr levels En go as α2, while these shifts go
as α4. This is why α is called the fine structure constant, and here we are talking
about the fine structure of the hydrogen atomic spectrum. A lot of degeneracy has
already gone from the level labelled by n, because we now have a whole range
of energies close to En, one for each value of l.

• The spin S of the electron models the fact that it constitutes a magnetic dipole
with dipole moment

µ =− e
mc

S ,

while in the electron rest frame, the proton appears to be circling it, and hence
creates a magnetic field B. (There are other ways of looking at this.) The result
is an interaction energy

W =−µ ·B ,

and this is called the spin–orbit interaction. We obtain another perturbation to the
main Hamiltonian, viz.,

∆Hso =
e2

2m2c2r3 L ·S ,

where L is the electron orbital angular momentum. This leads to a further fine
structure shift in the energy level of a state labelled by n and l, given by

∆Eso = α4mc2 j( j +1)− l(l +1)−3/4
4n3l(l +1/2)(l +1)

, (13.10)

where j is a quantum number corresponding to the total angular momentum of
the electron given by J = L+S.
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• Taking the two fine structure adjustments (13.9) and (13.10) together, we obtain
the surprisingly neat result

∆Efs =−α4mc2 1
4n3

(
2n

j +1/2
− 3

2

)
. (13.11)

These are very small adjustments, but they change the inertial mass of the hydro-
gen atom in the corresponding state.

• When the EM field itself is quantised, using the sophisticated theory known as
quantum electrodynamics (QED), one has to make another adjustment to the
energy levels of the various states. This is the Lamb shift:

∆ELamb =





α5mc2 1
4n3 k(n,0) , l = 0 ,

α5mc2 1
4n3

[
k(n, l)± 1

π( j +1/2)(l +1/2)

]
, l 6= 0 , j = l±1/2 ,

where k(n, l) is a slowly varying function of n for l = 0, with values in the range
[12.7,13.2], and a very small, slowly varying function of n and l (with value less
than 0.05) when l 6= 0. Qualitatively, the key thing here is that this removes a great
deal more of the remaining degeneracy in the energy levels. When we considered
only the fine structure adjustments, we found that the formula (13.11) depended
only on j, not l, so some states with the different l values still shared the same
energy, provided they had the same j value. The classic example is 2S1/2 with
n = 2, l = 0, j = 1/2, and 2P1/2 with n = 2, l = 1, j = 1/2. The Lamb shift shows
that these two states actually have slightly different energies.

• The last adjustment we shall mention here is called hyperfine structure. It arises
when we take into account the spin of the proton, which interacts not only with
the electron orbital motion, but also directly with the electron spin. Being concer-
ned with spin, these are of course magnetic effects once again. For states with
l = 0, where there is only a spin–spin coupling, it turns out that

∆Ehf =
8πγpe2

3mmpc2 (Sp·Se)|ψn00(0)|2 , (13.12)

where γp ≈ 2.79 is a numerical factor in the expression for the proton spin dipole
moment, mp is the proton mass, and ψn00 is the electron wave function, evaluated
here at the origin, where the proton is located. It turns out that

|ψn00(0)|2 =
1

πn3a3 . (13.13)

If

F := L+Se +Sp = J+Sp
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is the total angular momentum of the atom, with quantum numbers f and m f ,
then we finally obtain for the case l = 0,

∆Ehf =
m
mp

α4mc2 4γp

3n3

[
f ( f +1)− 3

2

]
. (13.14)

It is the prefactor of m/mp that makes this such a small adjustment, roughly a
factor of a thousand less than the fine structure shifts. When l = 0, f can only
be 0 in the singlet state where the spins of the electron and proton are oppositely
aligned, or 1 in the triplet state where the spins of the electron and proton are
parallel. So each l = 0 level splits into two levels, with the singlet pushed down
and the triplet pushed up. Transitions between these two closely spaced levels
give the famous 21 cm line in astronomy. When l > 0, there is no spin–spin
coupling, only the nuclear spin–electron orbit coupling, and the energy shift turns
out to be

∆Ehf =
m
mp

α4mc2 γp

2n3
f ( f +1)− j( j +1)−3/4

j( j +1)(l +1/2)
.

This supersedes the last formula because, although calculated in a rather different
way, it actually gives (13.14) when l = 0 (and hence j = 1/2). The proton spin
is 1/2, so f can only be j + 1/2 or j−1/2, and it turns out that the last formula
can be written

∆Ehf =
m
mp

α4mc2 γp

2n3
±1

( f +1/2)(l +1/2)
, for f = j±1/2 .

Each level characterised by particular values of n, l, and j is split into two.

The upshot of the above results is that there is never really any degeneracy, because
in the real world there is always some interaction that concerns one of any two
different states in a different way to the other. And each interaction within the bound
state system slightly alters its inertial mass by application of the rule of thumb that
energy is mass. The key word here is ‘slightly’, in the case of the hydrogen atom.
The energy levels are all close to the ground state, compared with the rest energy
of the whole system, so excited states are still considered to be excited states of the
same thing, viz., the hydrogen atom.

Another interesting system, taking us a step toward the panoply of bound state
particles in elementary particle physics, is positronium, a bound state e+e− of an
electron and a positron. It provides a model for quarkonium, i.e., quark–antiquark
bound states to discussed in the next section. In contrast to the hydrogen atom,
where the much heavier nucleus was treated as being essentially stationary, with the
electron in orbit around it, the two particles in positronium have equal masses.

The two-body problem is converted into a one-body problem by introducing the
reduced mass

mred :=
m1m2

m1 +m2
,
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which in this case is equal to me/2. If the two-body Hamiltonian has the form

H =
p2

1
2m1

+
p2

2
2m2

+V (r1,r2) , (13.15)

where the potential V is a function only of r = |r2−r1|, and if we work in the center
of mass frame where p1 =−p2 = p, then

H =
p2

2mred
+V (r) ,

which looks like the Hamiltonian for a single particle of momentum p and mass
mred. The coordinate r is then just the distance between the two components.

In a first approximation, the Hamiltonian for positronium does have the form
(13.15), with V (r) =−e2/r. We call this the unperturbed Hamiltonian, because we
intend to treat later adjustments merely as small perturbations. At this stage, we get
the unperturbed (first approximation) energy levels for positronium by substituting
m → m/2 in the Bohr formula (13.8) for the hydrogen energy levels (dropping the
subscript on the electron mass):

Epos
n =

1
2

En =−α2mc2 1
4n2 , n ∈ Z+ .

The ground state binding energy is thus 6.8 eV, half the value for hydrogen. Even
the wave functions for the energy eigenstates are functionally the same, with a small
adjustment in one of the fixed parameters (in fact, the Bohr radius).

It is interesting to see what happens to the perturbations discussed above for the
hydrogen atom, i.e., terms leading to higher approximation:

• The relativistic correction to the Hamiltonian is now

∆Hrel =− 1
8m3

1c2
p4

1−
1

8m3
2c2

p4
2 =− 1

4m3c2 p4 ,

which looks like a factor of 2 bigger than in the hydrogen case, except that first
order perturbation theory requires us to find the expectation value in the positro-
nium state ψnlm, because this gives the shift in the energy level labelled by n. It
turns out that the expectation value of p4 in the hydrogenic state ψnlm goes as
(mc)4, whence for positronium is is reduced by a factor of (1/2)4. Finally, the
relativistic correction for positronium is one eighth what it is for hydrogen.

• Regarding spin effects, viz., spin–orbit and spin–spin coupling between electron
and positron, there is now no distinction between fine structure and hyperfine
structure, because the factor of m/mp for hydrogen is replaced by unity in the
present case. So all such perturbations go as α4mc2 and can be classified as fine
structure.

• There is a new perturbation due to the fact that there is no stationary nucleus
and the potential is in reality non-static, whence the finite propagation time for
the EM field must be taken into account. Classical electrodynamics suggests the
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following adjustment to the Hamiltonian:

∆Hret =− e2

2m2c2
1
r

[
p2 +(p·r̂)2] ,

which also eventually leads to an adjustment going as α4mc2.
• The fine structure adjustments taken together amount to

∆Epos
fs = α4mc2 1

2n3

[
11
32n

− l + ε/2
2l +1

]
,

where ε is 0 for the singlet spin combination and

ε =





− 3l +4
(l +1)(2l +3)

, for j = l +1 ,

1
l(l +1)

, for j = l ,

3l−1
l(2l−1)

, for j = l−1 ,

for the triplet. Note that, since the electron and positron spins contribute in the
same way, they are combined to give S := S1 +S2, and the symbol J can then be
used for the total angular momentum

J := L+S = L+S1 +S2 .

• There is still a Lamb shift correction going as α5mc2, but all degeneracy has
already been removed at the fine structure level in this case, so as Griffiths points
out, the Lamb shift loses some of its interest.

However, in the case of positronium, there is a completely new perturbation to the
energy levels of the system due to the fact that e+ and e− can ‘temporarily’ an-
nihilate to produce a virtual photon. This is a QED correction with the Feynman
diagram shown in Fig. 13.1.

It is not expected to contribute anything when l > 0, because the wave function
is then zero at the origin, i.e., when there is no separation between electron and po-
sitron. We understand this disappearance of the wave function for zero separation
intuitively as having something to do with the centrifugal force that must be pushing
the two components apart when l 6= 0. On the other hand, when l = 0, it transpires
that this effect contributes something going as |ψ(0)|2, where ψ is the wave func-
tion. This is explained intuitively in terms of the idea that the two components must
meet in space in order to annihilate.

Furthermore, the virtual photon has spin 1 like any other photon, and QED would
forbid a spin singlet combination of the electron and positron to annihilate ‘tempo-
rarily’ in this way. So this particular perturbation only affects the zero angular mo-
mentum spin triplet configurations. These are all rather feeble attempts to put words
to what the Feynman diagram appears to show. Basically, one just has to carry out
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Fig. 13.1 Feynman diagram
for electron–positron pair
annihilation, which affects
the positronium spectrum of
energy levels. γ is a virtual
photon

ee

ee

γ

1

the QED calculation, and it is comforting to find that one does have a vestige of
intuition about it. Anyway, the final result of that calculation is a positive shift in the
energy of the l = 0 triplet states by the amount

∆Eann = α4mc2 1
4n3 (l = 0 , s = 1) . (13.16)

By convention, positronium energy eigenstates are labeled n2s+1l j, where l is given
in spectroscopic notation, i.e., S for l = 0, P for l = 1, D for l = 2, and so on, and s
is the total spin, equal to 0 for the singlet and 1 for the triplet.

Like hydrogen, positronium makes transitions between its energy eigenstates,
emitting or absorbing photons of the corresponding wavelength. But in contrast
to hydrogen, positronium can simply annihilate itself to form two or more pho-
tons. (One photon is not possible, by conservation of momentum, because there is
no rest frame for the photon.) When in an energy eigenstate specified by quantum
numbers l and s, positronium is in a charge conjugation eigenstate with eigenvalue
(−1)l+s, whereas n photons are in a charge conjugation eigenstate with eigenvalue
C = (−1)N . Since QED preserves charge conjugation eigenstates, there is a selec-
tion rule for annihilation into photons, namely,

(−1)l+s = (−1)N ,

where N is here the number of resulting photons. One can check that, to first order in
perturbation theory, the decay is forbidden for l > 0. Intuitively, this comes back to
the idea that the positron and electron wave functions have to overlap in space, and
they do not unless l = 0. However, to higher orders, and hence in much less probable
situations, positronium can decay directly from a state with l > 0. It transpires that it
would be much more likely to cascade down to an S state first, then decay. Anyway,
if l is equal to zero, the above selection rule is telling us that the spin singlet s = 0
must decay to an even number of photons, generally two, while the spin triplet s = 1
has to decay to an odd number of photons, and hence at least three, since just one
photon is out for other reasons. One can estimate the lifetime τ of positronium by
lowest order QED calculations. It turns out that
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τ =
2h̄

α5mc2 = 1.25×10−10 s .

All the details can be found in [10].
It is interesting to reflect that all these perturbations with their corresponding

energy shifts should also shift the way the system as a whole reacts to being acce-
lerated. But for the basic EM potential −e2/r, we have already seen that there is a
classical (pre-quantum) explanation for this, namely the self-force. The point about
describing the details of the hydrogen and positronium bound states here is to en-
courage the reader to consider the other energy shifts in this light. For example, is
there a way of understanding why the one due to the Feynman diagram of Fig. 13.1
should increase the inertia of positronium?

13.3 Quark Bound States

The vast majority of elementary particles are not elementary. The mesons, such
as the π mesons, are quark–antiquark bound states, while the baryons, such as the
neutron and proton, are bound states of three quarks. We shall now consider these,
and in particular, the way their inertial masses can be estimated.

We begin with a comment on the masses of the quarks themselves. Then, in
Sect. 13.3.2, we discuss what Griffiths refers to as quarkonium, viz., states q1q2,
where q1 and q2 are heavy quarks c, b, or t, and the bar denotes the antiparticle.
Such particles are of course mesons. These models are inspired by the theory of
positronium. Section 13.3.3 is a very brief introduction to the notion of multiplet, all-
important for rationalising the vast array of particles churned out of our accelerators.

In Sect. 13.3.4, the light quark mesons are treated separately, because intrinsi-
cally relativistic, and Sect. 13.3.5 is about baryons, which are states of the form
q1q2q3, where q1, q2, and q3 are any three quarks. The ultimate aim here will
be the discussion of the meson masses in Sect. 13.3.4 and the baryon masses in
Sect. 13.3.5. This discussion will necessarily skate over details, so is only intended
to illustrate how this aspect of inertia is approached in particle physics.

Sections 13.3.6–13.3.8 describe some attempts to relate the masses of different
baryons, or different mesons. They illustrate the new kind of thinking one has in the
quantum theoretical context, which uses symmetry considerations and the relativis-
tic rule-of-thumb E = mc2, only paying lip service to any classical idea of a bound
state comprising several subparticles.

We will barely mention quantum chromodynamics (QCD), which is a very so-
phisticated quantum field theory for modelling the strong force. Perhaps this is the
best place to outline the way it works, at least qualitatively. A good reference to
begin with is [10], while full up-to-date details can be found in [33]. In this model,
quarks are sources of the strong force through something known misleadingly as
colour, which plays the role of the charge in electrodynamics. The basic process is

quark −→ quark+gluon ,
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the analogue of e− −→ e− + γ in quantum electrodynamics (QED). The gluon
is a massless intermediate vector boson, like the photon. However, in contrast to
QED with its single kind of charge, there are three colours, called red, green, and
blue. Furthermore, the gluons have colour attributes. Any given quark has a colour
state, in the sense of quantum mechanics, and the set of all colour states constitutes
a 3D vector space upon which one can define SU(3) transformations, i.e., unitary
transformations with unit determinant. The theory is then constructed in such a way
that the dynamics is invariant under such transformations by building everything up
from an SU(3) invariant Lagrangian.

Just as QED construes the electromagnetic interaction as being due to exchange
of virtual photons, so QCD construes the strong interaction as being due to exchange
of virtual gluons. So any strongly bound state is conceived of as being full of virtual
gluons. There are eight different possible colour attributes for a gluon, a way of
saying that the gluon state space carries an 8D irreducible representation of those
SU(3) transformations mentioned above.

Now one of the new laws of nature coming with this theory is that all naturally
occurring particles are colourless or white, i.e., the total amount of each colour is
zero or the three colours are present in equal amounts (bearing in mind that an anti-
quark carries anticolour). This guarantees that the theory will not sport bound states
of two quarks or of four quarks. The only combinations satisfying the law have the
form qq, which are mesons, qqq, which are baryons, and qqq, which are antiba-
ryons, together with packages containing several such combinations, of course. We
shall say a little more about this law later (see p. 351), but the reader should perhaps
be asking how such a rule could be explained physically.

Returning to the strong force mediators, the gluons, it turns out that they can ac-
tually interact amongst themselves, in the sense that there are vertices in Feynman
diagrams which involve only gluons. Bound states of interacting gluons known as
glueballs are therefore a possibility, occurring in colourless combinations to satisfy
the law mentioned above. Since gluons have a colour attribute, one would not ex-
pect to find them as isolated particles, in contrast to photons. According to Griffiths,
there is evidence, from deep inelastic scattering experiments, that roughly half the
momentum of a proton is carried by electrically neutral constituents that we may
presume to be gluons. There is even a possibility that glueballs may have been ob-
served.

In the present context, this momentum contribution must be something like the
strong analogue of the EM field momentum discussed in Chap. 5. If quantum chro-
modynamics had a classical formulation like electrodynamics, one would presuma-
bly find a colour field momentum that corresponded to this. So ultimately, this large
fraction of the proton momentum in the form of gluons is another manifestation of
the self-force idea, but complicated by the fact that it arises from a non-Abelian
gauge theory.

It could be interesting to try to formulate this in a more concrete way. One of
the obstacles would be the lack of a clear ontology which thwarts most attempts to
obtain a physical understanding of quantum theory. For instance, the gluons here
are presumably virtual, a notion that only gets a meaning from terms in a Feynman
graph expansion.
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Table 13.1 What we know about quark masses. The intrinsic masses are taken from the new
edition of [10], which no longer tabulates a distinction between the mass in mesons and the mass
in baryons, but simply quotes an average effective value for the mass in these bound states. The
third and fourth columns are thus taken from the old edition, with an adjustment for the top quark.
The intrinsic masses of the light quarks have gone down considerably between the two editions.
The values come with a disclaimer: they are model dependent. All the most up-to-date data can be
found at the website of the Particle Data Group [11]

Quark flavour Intrinsic mass Mass in mesons Mass in baryons
[MeV/c2] [MeV/c2] [MeV/c2]

Light quarks u 2 310 363
d 5 310 363
s 95 483 538

Heavy quarks c 1 300 1 550 1 550
b 4 200 4 700 4 700
t 174 000 177 000 177 000

13.3.1 Quark Masses

We do not know the quark masses. In a way, this is the whole problem in what
follows, and it is the interesting part of the discussion. The mass of a quark bound
state will be made up of different ingredients, and we can only measure the result.
We can only measure the mass of the resulting meson or baryon. It is like trying to
guess what went into a cake only when it comes out of the oven. Except that here,
there are many cakes, each containing different combinations of the ingredients, and
in particular six ingredients: the masses of the six different quarks u, d, s, c, b, and
t. The difficulty is that we can never catch the baker in the act. We never see a quark
on its own.

So in a way, the really ultimate aim of all this may not be the discussion of the
meson and baryon masses, but what we can actually deduce about the quark masses.
Note that the Standard Model of particle physics does not fix their values, nor even
give a hint as to what they should be. (And fortunately, the Standard Model contains
many other parameters it cannot explain, so we should not run out of things to do in
the near future.) Consequently, let us say that all the rest of this chapter is an attempt
to answer the question: what are the quark masses?

For the moment, it is worth quickly summarising what Griffiths has to say about
it [10, Chap. 4]. Table 13.1 does this. There are reasons for thinking that the u and d
quarks are intrinsically light. The word ‘intrinsically’ refers to what we would find
if we could ever get them out of a bound state. (Unfortunately, Griffiths also uses
the term ‘bare mass’, now enslaved by renormalisation theorists, for whom the bare
mass of any point particle is always infinite.) The present view is that the intrinsic
masses of the u and d are well below 10 MeV/c2 [11].

But in a hadron, i.e., any particle partaking in strong interactions, which means
the mesons and baryons, the quarks have a higher effective mass. The precise value
depends on the context. It seems to be higher in baryons than in mesons. Why is
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there an effective mass and an intrinsic mass? One reason is presumably the motion
of the quark within its bound state. If it has kinetic energy, its relativistic mass will
be higher than its rest mass. This is not mentioned by Griffiths. Instead he gives the
analogy of an object moving through a viscous liquid: its effective inertia is greater
than its true inertia.

This analogy is sometimes given to explain how the truly elementary particles
get their mass via the Higgs mechanism in the Standard Model, something we dis-
cuss later (see Sect. 13.4). The analogy may not be perfect. There is a difference
between this kind of inertia and the real thing, which is that the kind of inertia in a
viscous liquid is velocity dependent. On the other hand, relativistic mass is velocity
dependent.

There is another reason why a quark mass might be different in different contexts,
apart from its kinetic energy in the given bound state. This is the simple fact that the
quark may itself be a bound state. This is something that does not seem to be much
discussed, but it is clear that, if the quark is itself a bound state, built up of various
ingredients, the way it is bound together will be affected by the neighbourhood it
finds itself in.

One model to explain the effective quark mass is the MIT bag model, in which the
hadron is treated as a bag that confines the quarks [33, Sect. 3.3]. Although confined,
they are considered to be able to move around like free particles, and one calculates
a bag pressure. Clearly, this notion of pressure is related to the idea of the quarks
having kinetic energy within the bag. The model is entirely phenomenological and,
although it proves surprisingly useful in many situations, it is beset with theoretical
shortfallings too. One expects the full theory of quantum chromodynamics (QCD) to
deliver all the answers. This is the currently favoured theory of the strong force. The
main difficulty with it is that it is very hard to do calculations, although a promising
approach has been lattice QCD [33].

Finally, we note that the effective masses of the u and d in hadrons are much clo-
ser in relative terms than their intrinsic masses. The latter would not contribute much
to considerations of hadron masses, and furthermore, the effective masses could be
taken as equal to a reasonable approximation. However, the s quark has a much hi-
gher intrinsic mass, and much higher effective mass in the hadrons. It is thought that
the strong force may treat all flavours equally, but the different mass of the s quark
breaks the flavour SU(3) symmetry, a point discussed further in Sect. 13.3.3.

13.3.2 Quarkonium

Quarks have electrical charge, so there will be EM forces in the q1q2 bound state.
But quarks are also sources for the strong force, i.e., they have colour, which is
the strong force equivalent for charge. They exchange not only photons, but also
gluons. The full quantum field theory for the strong force is quantum chromodyna-
mics (QCD). The book by Griffiths is a good introduction to this, because it shows



330 13 Mass in Elementary Particle Physics

right away how to do calculations using the Feynman rules [10], but we do not need
to go into such detail here.

Assuming that we can treat this system as non-relativistic, due to the supposed
high masses of the constituent quarks, we nevertheless face the problem of what
(strong force) potential to stick into our Schrödinger equation. Further, when it
comes to considering spin coupling effects, we do not know the strong force analog
of the magnetic field. Some bold assumptions can be made, however.

There are two striking features of the strong force, related to the fact that the
number αs standing in as coupling constant in QCD (the analog of the fine structure
constant α in electrodynamics) is not constant at all:

• At short distances, less than the dimensions of the proton, this running coupling is
very small, implying that the strong force is actually quite weak. Griffiths rather
nicely describes the quarks as rattling around within the proton without interac-
ting very much. This is confirmed by deep inelastic scattering experiments, and
goes by the name of asymptotic freedom, i.e., the coupling tends to zero on small
length scales.

• At greater distance, the running coupling becomes very big. This is related to
the fact that we have never managed to isolate a single quark, by breaking up a
meson or baryon, for example, and it is referred to as quark confinement.

Short distance behaviour, as within our quarkonium bound state, is still likely to be
dominated by one-gluon exchange, just as EM effects within such a system would
be dominated by one-photon exchange. In addition, both the gluon and the photon
are massless spin one particles, and one would expect (this is the bold hypothesis)
the strong interactions to be identical in form to the EM interactions, apart from the
different coupling constant αs in the place of α , and some colour factors, simple
numerical factors arising from the accounting procedure we call QCD.

So we guess a strong force potential of the form

V (r) =−4
3

αsh̄c
r

+F0r , (13.17)

where the factor of 4/3 is a colour factor, the first term is of Coulomb form, and F0
is a very large constant that engineers quark confinement. Of course, F0 is supposed
to go to zero on very short length scales, like αs, so this picture comes with a pinch
of salt.

Now the light quark mesons like the pions are intrinsically relativistic because
the binding energies they involve (a few hundred MeV) are so much greater than
the masses of the constituent quarks u, d, and s. Although we made relativistic cor-
rections for hydrogen and positronium, we did assume them to feature merely as
perturbations. In the present case we are hoping that bound states of the more mas-
sive quarks c, b, and t are accessible to the same procedure. There is nevertheless
a proviso. The binding energy E is still expected to represent a substantial fraction
of the total energy of the system, implying that different energy levels will be ra-
ther widely spaced. It is thus standard practice in particle physics to consider these
different energy levels as different mesons, with masses
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M = m1 +m2 +E/c2 , (13.18)

where m1 and m2 are the masses of the constituent quarks.
It is not really obvious that the heavy quark mesons will be non-relativistic. For

a Coulomb potential, one finds that E/mc2 ∼ α2 [consult (13.8) on p. 319]. This
makes the binding energy a fixed fraction of the rest energy of the constituents,
whatever their mass. But then in QCD, if the strong force had a purely Coulomb
style potential, the heavy quark mesons would be just as relativistic as their light
quark cousins. However, the bound state of two heavy particles is generally smaller
than the bound state of two light particles, because the Bohr radius of a bound state
goes as 1/m. One sees this in the case of the hydrogen atom, for which the Bohr
radius is given by

a =
h̄2

me2 , (13.19)

where m is the electron mass in that case. For positronium, the Bohr radius of the
system is apos = 2a, because we feed in the reduced mass in the place of m. What
does this smaller radius of the bound system imply? There are two points:

• Light quark mesons will be more sensitive to the confining term in the potential,
which is linear in (13.17). But it turns out that binding energies go more like
m−1/3 than m for such a potential.

• Asymptotic freedom corresponds to the idea that αs is smaller at short range, so
the strong coupling that operates for the closer heavy quark pair will be smaller
in the analog E/mc2 ∼ α2

s of the relation that triggered this discussion.

So we shall go ahead with this assumption.
The first candidate here is charmonium, a non-relativistic bound state cc of a

charm quark and an anti-charm quark. The famous ψ meson, also known as J/ψ ,
discovered in 1974, is in fact the 13S1 state of charmonium. It was produced by
e+e− annihilation via a virtual photon at SLAC, hence has spin 1, as indicated by the
superscript 3 here. It has more than 3 times the mass of the proton and an unusually
long lifetime of 10−20 s, compared with a standard of 10−23 s for the typical hadron.

By comparison with positronium, one would expect there to be a spin 0 state 11S0
(the subscript zero indicates a total angular momentum j = 0) with lower mass. One
would also expect six n = 2 states. Shortly after the discovery of J/ψ , the ψ ′ meson
was found, corresponding to 23S1. Note that this too has spin 1, and was found by
e+e− annihilation, but at a higher beam energy. A whole range of such mesons are
now known, raising a problem of nomenclature. Griffiths describes the following
system:

• Singlet S states, i.e., spin 0 and l = 0, are denoted by ηc.
• Triplet S states, i.e., spin 1 and l = 0, are denoted by ψ .
• Triplet P states, i.e., spin 1 and l = 1, hence j = 0, 1, or 2, are denoted by χ0, χ1,

or χ2.
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• The value of n, originally denoted by putting n−1 primes on the symbol, is now
usually denoted by putting the energy equivalent of the mass of the particle in
brackets (in MeV).

Obviously, the above list continues. Examples are: ψ = ψ(3097) for n = 1, ψ ′ =
ψ(3686) for n = 2, ψ ′′ = ψ(4040) for n = 3, ψ ′′′ = ψ(4160) for n = 4, and so on.

There is a very good correlation between the charmonium and positronium states,
implying that the model is working well. What is interesting here is to note the wide
spacing of the levels compared with hydrogen or positronium, for example. The gap
between the two n = 1 levels, called hyperfine splitting in hydrogen, is 1011 times
greater in charmonium than in positronium. But despite the enormous scale change,
the ordering of the energy levels, and their relative spacing for a given value of n,
are strikingly similar. However, rather than considering them as levels, or excited
states, of the same thing, one tends to think of them as different things. After all,
inertial mass is usually considered a defining property of a particle.

Griffiths quotes results from numerical solutions of the Schrödinger equation for
the potential (13.17) with its Coulomb style and linear terms. F0 is chosen to fit the
data and a value of around 900 MeV/fm is found. (But note that other potentials
can also be fitted to the data.) Since the potential corresponds to a force model, we
can make a connection between the idea that the mass of the bound state should
be given by a relation like (13.18), which includes the binding energy E, and the
classical (pre-quantum) idea that this binding energy contributes (negatively) to the
inertial mass of the system precisely because it is the measure of a force the system
exerts on itself to assist acceleration, i.e., in the same direction as the acceleration, if
one tries to accelerate it. In this case, the self-force is a strong force, making much
bigger contributions (reductions here) to the inertia.

What are m1 and m2 in the relation (13.18)? They should be roughly the inertial
masses of the component quark and antiquark taken alone, adjusted for the appro-
priate speeds of those components within the system, in the usual relativistic way.
Even if this system is considered to be non-relativistic, so that the quark and anti-
quark are moving rather slowly compared with c, they are considered to be massive
particles in the sense of having a high rest mass, so they should have a significant
kinetic energy. Indeed, by the virial theorem, their kinetic energy is considered to be
on a par with the binding energy. Presumably, this is part of the explanation for the
different effective masses of the quarks within different bound systems. Note that if
we take the effective value of the charm quark mass as 1550 MeV/c2, as given in
Table 13.1, twice this falls almost directly on the mass of the ψ meson as given three
paragraphs ago. This suggests that the effective masses quoted by Griffiths include
the maximum absolute value of the binding energy already.

A word should be said about the long lifetimes of the n = 1 and n = 2 char-
monium particles (but see [10] for more detail on that). This is explained by the
OZI rule, which suppresses their strong decay to pions, because the only possible
Feynman diagrams for such decays can be cut in two by slicing only internal gluon
lines. For n = 3 and higher, the charmonium states are massive enough to be able
to decay to charmed D mesons, viz., D0 and D0 with mass 1865 MeV/c2, or D±
with mass 1869 MeV/c2. These are bound states of the charm quark with the light
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quarks, viz., D+ = cd, D− = dc, D0 = cu, and D0 = uc. The n = 1 and n = 2 states
of charmonium are considered to be bound, while for n≥ 3, they are considered to
be quasi-bound, because their lifetimes are so much shorter.

There are also bottomonium bb bound states. Here, even the n = 3 states are
considered to be bound states, because the B mesons, viz., B+ = ub, B− = bu, B0 =
bd, and B0 = db, to which bottomonium might decay, are massive enough to limit
this process. The level spacings in the charmonium ψ and bottomonium ϒ systems
turn out to be not just qualitatively, but also quantitatively similar, despite the fact
that the bottom quark is several times more massive than the charm quark. As noted
above, for a Coulomb style potential, level spacings are expected to be proportional
to the mass, while for a linear potential, they are expected to go as m−1/3. So if
the potential (13.17) is a good approximation, the almost equal spacings in the two
systems have to be due to some kind of conspiracy between the two terms in the
potential or, as Griffiths puts it, an accidental feature of the value found for F0,
adjusted to fit the ψ data.

If it could be made, the toponium system tt should be more sensitive to the short
range, Coulomb part of the potential, because the top quark is so much more mas-
sive, and the Bohr radius is inversely proportional to mass [see (13.19)]. One would
therefore expect the spacings to be different there. However, according to Griffiths,
the top quark is too shortlived to form bound states. The reaction producing them
is u+u−→ t+ t, with the top and anti-top decaying immediately. Their presence is
merely hypothesis for explaining the ensuing decay products.

13.3.3 Multiplets

Particle accelerators churn out scores of different particles. These are classified by
arranging them into multiplets, i.e., sets of particles which have something in com-
mon with one another. And what they have in common is basically their inertial
mass. However, masses are not exactly constant within any multiplet. So one of the
main activities in particle physics is to fit observed particles into these multiplets,
and another is to explain why they do not quite fit.

The explanation for the existence of any such groupings of particles always
comes back to the idea of a symmetry group, and the aim in this short section is
just to glimpse the connection between the multiplet groupings, the related symme-
try, and the notion of inertial mass as it is handled in particle physics today. A very
good reference for getting all the details about that is [32].

Historically, the first multiplet contained just two particles, the proton and neu-
tron. They have masses mp = 938.28 MeV/c2 and mn = 939.57 MeV/c2. The idea is
to consider p and n as two states of the same particle, called the nucleon:

ψp = ψ(r, t,s,τ = +1) , ψn = ψ(r, t,s,τ =−1) ,



334 13 Mass in Elementary Particle Physics

where s is the spin coordinate and τ is called the isospin coordinate. The wave
function of the nucleon is represented by a two-component column vector

ψ =
(

u1(r, t,s)
u2(r, t,s)

)
,

where
∣∣u1(r, t,s)

∣∣2 gives the probability density for a proton at position r and at time

t, with spin s, while
∣∣u2(r, t,s)

∣∣2 does the analogous job for the neutron. These so-
called isospinors carry a representation of the group SU(2) (unitary, complex-valued
2×2 matrices with unit determinant), just as spinors do. By this we mean that, for
any A ∈ SU(2), Aψ is another isospinor, representing some other nucleon (or the
same nucleon from some other angle). And the big idea here is that all A ∈ SU(2)
commute with the Hamiltonian for the strong interaction.

We still have to see why this is a big idea. The following is an attempt to expose
this as explicitly as possible. It is absolutely standard theory, but not always easy to
get so quickly from textbooks, even though it is qualitatively the key feature, because
textbooks have to build up to things. So here, we are standing on the shoulders of
giant textbooks like [32].

Isospin is theoretically a carbon copy of spin. Just as we had a spin vector S for
spin 1/2 particles whose components were multiples by h̄/2 of the Pauli spin ma-
trices σi, i = 1,2,3, so we have an isospin vector T whose components are multiples
by 1/2 of these matrices. The matrix components of T generate the matrices of the
isospin SU(2) group, by which we mean that exponentials of linear combinations
of them deliver SU(2) matrices. The most general isospin SU(2) matrix thus has the
form

Uiso(ε) = Uiso(ε1,ε2,ε3)

= exp(−iεiTi)

= exp
(
− i

2
εniσi

)

= Icos(ε/2)− iniσi sin(ε/2) ,

where the angles ε = (ε1,ε2,ε3) = εn characterise rotations about the three axes of
the abstract isospin space. Here we can interpret this as a rotation through ε about
an axis in the n direction.

The three components Ti = σi/2 of the vector T are matrices, or operators, in the
language of quantum mechanics. They should be wearing a hat, but we shall not be
dwelling on them for long. They span the Lie algebra of the symmetry group, and
have commutation relations

[
Ti,Tj

]
= TiTj−TjTi = iεi jkTk ,

where εi jk is the totally antisymmetric tensor with ε123 = +1. The eigenstates of
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T3 =
(

1/2 0
0 −1/2

)

are the isospin states corresponding to p and n, with eigenvalues +1/2 and −1/2,
respectively. Another way to write these isospin states is

|p〉= |T = 1/2,T3 = 1/2〉 , |n〉= |T = 1/2,T3 =−1/2〉 ,

where T is found from the eigenvalue T (T + 1) of the operator T2. The charge
operator Q is related to T3 by

Q := e
(

1 0
0 0

)
= e(T3 +1/2) =

1
2

e(σ3 +1) .

The Lie algebra of a symmetry group is important in practical terms because it can
be used to construct representations of the group itself. This is what is made explicit
in [32].

But why are representations of the group important? Well, we just said that the
proton and neutron states carried such a representation. Their importance is there-
fore just that a vector basis for a group representation can be put in correspondence
with a set of particles of similar mass (and other similar properties), so this is what
we need to understand. But first, let us see another classic example.

The pions π−, π0, and π+ have masses 139.59, 135, and 139.59 MeV/c2, respec-
tively, putting them very close. They are similar in other ways. For example, they
have spin 0. So the 3D vector space constructed by taking linear combinations of
their states is considered to carry a representation of SU(2). This is a hypothesis, of
course, and we have yet to see its utility. In detail, the hypothesis is that

|π+〉=−|T = 1,T3 = 1〉 , |π0〉= |T = 1,T3 = 0〉 , |π−〉= |T = 1,T3 =−1〉 ,

where the minus sign in the first relation is just a choice of phase made for conve-
nience. (One needs to see the details to see why that is convenient.) The three vectors
|T = 1,T3 = ±,0〉 are precisely the same as the three vectors one constructs when
studying angular momentum, with L = 1 and three values for L3. They are all ei-
genvectors of the operator T2 with eigenvalue T (T +1) = 2, and eigenvectors of T3
with values ±1, 0. We have a carbon copy of the theory of angular momentum, and
the 3D representation of the rotation group.

Now the crux of all this is that the isospin group is hypothesised to be a symmetry
group of the strong interaction. This means that, if we have a Hamiltonian Hstrong
for the strong interaction, then we have

[
Hstrong,Ti

]
= 0 , i = 1,2,3 , (13.20)

i.e., this Hamiltonian commutes with all the generators Ti of the isospin group. This
means that it commutes with all members of the group, viz.,

[
Hstrong,Uiso(ε)

]
= 0 , ∀ε .
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Then in turn the matrix operator Sstrong := exp(iHstrongt/h̄) determining the time
evolution of states under the strong interaction also commutes with all the Ti and
with all members of the isospin SU(2) group:

[
Sstrong,Ti

]
= 0 , i = 1,2,3 ,

[
Sstrong,Uiso(ε)

]
= 0 , ∀ε . (13.21)

The argument here works backwards, so that the latter imply (13.20), i.e., (13.20)
and (13.21) are equivalent.

Qualitatively, this means that the strong interactions make no distinction between
the states of a multiplet. Other interactions do, of course, and this is a key point in
understanding why masses should vary over a multiplet. For example, the members
of the two isospin multiplets discussed here have different charges, so the electro-
magnetic interaction will certainly make a distinction between them. And now the
time has come to be absolutely explicit about the connection between this idea of
symmetry or otherwise for different types of interaction and the way mass is treated
in particle physics. Because this book is about inertial mass.

The point is that one considers the mass of a particle described by the state |ψ〉
to be just

Mψ = 〈ψ|H|ψ〉 ,

up to a factor of c2, i.e., it is basically just the expected value of the energy. So this
involves the rule of thumb described in Sect. 13.1, and it requires us to consider the
sources of energy within the system we consider here to be a particle, as modelled by
some Hamiltonian H. Now let us see how this idea combined with SU(2) symmetry
gets constancy of mass within an SU(2) multiplet.

Consider the proton |1/2,1/2〉 when it is transformed in a purely mathematical
way by A := e−iπT2 ∈ SU(2):

A|1/2,1/2〉 = e−iπσ2/2|1/2,1/2〉
=

(
cos

π
2
− iσ2 sin

π
2

)
|1/2,1/2〉

= −i
(

0 −i
i 0

)(
1
0

)
=

(
0
1

)
= |1/2,−1/2〉 .

This is of course the neutron state. So we have shown that

A|p〉= |n〉 .

We now have the simple argument

mstrong
p = 〈p|Hstrong|p〉

= 〈n|AHstrongA†|n〉
= 〈n|Hstrong|n〉
= mstrong

n ,
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because A commutes with Hstrong, and A†A = I, the identity 2×2 complex matrix.
The notation mstrong

n and mstrong
p suggests that there may be other contributions to

the masses of these particles, e.g., due to the electromagnetic interaction, which has
its own Hamiltonian HEM. If most of the energy in the system stems from strong
interactions, then mstrong will be the dominant contribution to the mass, and other
interactions may be treated as perturbations.

This is what happens with the EM interaction within isospin multiplets like {n,p}
and {π−,π0,π+}. Indeed, the EM interaction is used to explain the mass splitting
within these multiplets, i.e., the relative mass difference, which is of the order of
∆M/M ∼ 1/1000 in the nucleon multiplet and ∆M/M ∼ 5/100 in the pion mul-
tiplet. Explicitly, if the Hamiltonian has the form H = Hstrong + HEM, and if these
interactions really are the only ones we need to take into account, then

mn = 〈n|H|n〉= mstrong
n +mEM

n ,

where

mEM
n := 〈n|HEM|n〉 ,

and likewise,

mp = 〈n|H|p〉= mstrong
p +mEM

p ,

where

mEM
p := 〈p|HEM|p〉 .

This is precisely the quantum version of the self-force idea.
But let us see what Griffiths has to say about the classical idea [10, Sect. 4.5]. In

his introduction to the idea of isospin, he mentions the original hope that the small
difference between the proton and neutron masses might be attributed to the fact that
the proton is charged, because the energy stored in its electric field should contribute
to its inertia according to the rule of thumb in Sect. 13.1. But then he points out that
the proton ought to be the more massive of the two particles, according to this,
whereas it is in fact the neutron that is more massive. He adds in a footnote that,
because the neutron–proton mass splitting is in the wrong direction to be purely
electromagnetic, SU(2) is now taken to be only an approximate symmetry of the
strong interactions.

It is not difficult to counter these statements. If the neutron and proton really
are bound states of three quarks, viz., uud for the proton and udd for the neutron,
and if each quark is charged, it is not obvious which particle should gain more
mass from its internal EM interactions. It is not a simple calculation at all. For one
thing, in either p or n, the EM binding energy may be negative or positive, hence
contributing negatively or positively to the inertia. Of course, the suggestion here
is not necessarily to try to do such a hard calculation, but just to realise that EM
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self-forces within a particle will contribute to its inertia, and in ways that are not
always obvious.

Regarding the statement that SU(2) is now taken to be only an approximate sym-
metry of the strong interactions, this is undoubtedly the currently held view, but it is
a non sequitur in the above. Indeed, we now consider that the components u and d
themselves contribute different amounts of inertia to the system just by having dif-
ferent inertial masses. So there are several ingredients available for explaining the
mass splitting in the neutron–proton system. Furthermore, it is not obvious what ei-
ther of these ingredients actually contributes, because as we shall see, there is debate
over the inertial masses of the u and d.

In discussing the isospin model of the pion multiplet, Greiner and Müller make
the following remark [32, Sect. 5.4]. They say that the near equality in the pion
masses may be interpreted as meaning that the strong interaction, which determines
the dominant part of the mass, is invariant in isospin space, and that the small mass
differences are caused by the EM or other interactions. They then note that the
Coulomb energy of a homogeneously charged sphere with radius

rCompton :=
h̄

mπc
,

the Compton wavelength of the pion, is found to be about 0.6 MeV. This is to be
compared with the mass splitting of 4.59 MeV. There is a factor of ten difference,
but then why take the Compton wavelength? At least in this case, the EM energy
appears to be taking the mass in the right direction. If one considers that one should
just add the Coulomb energy of the pion whenever it is charged, then the π− and the
π+ should be more massive than the π0, and why not by the same amount into the
bargain?

But now go back to the idea that these pions are actually quark–antiquark bound
states, i.e., π− is du, π0 is a mixture of dd and uu, and π+ is ud. Perhaps our charge
dumbbell model for self-forces would tell us something about this? We discussed
just this issue in Sect. 5.4. In the dumbbell model, we would expect a certain elec-
tromagnetic mass from whatever tiny spatial structure the individual quarks might
have, and a much smaller addition to this value due to the presence of two charge
centers with like charge values. The latter goes as 1/d, where d is the separation
of the two charge centers. So for the charged pions, each composed of two like
charges, we expect the 1/d contribution to be positive. Contrast with the neutral
pion π0 which is supposed to be a superposition of states like uu, dd and so on. In
this case, the charges have opposite signs, so the 1/d contribution will be a reduc-
tion.

In Sect. 5.4, we used this extremely crude classical model to estimate the sepa-
ration between the quarks and found d ∼ 10−14 cm, something Feynman claims to
accord with the diameters pions appear to have from cross-section measurements
in high energy collisions [2, Chap. 28]. The point here is not to claim that we have
made a great discovery with the dumbbell model. In fact there are two points:
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• Mass splittings in multiplets of bound state particles like the isospin doublet and
triplet discussed above are today explained by a quantum theoretical version of
the classical self-force idea.

• The classical idea can be more sophisticated than just saying that the bound state
has an overall charge and then working out the energy in its fields as though it
were composed of just one point charge.

Another thing to reflect on given the first statement is the way energy involved in
interactions like the EM interaction within bound states can cause the system to react
to acceleration by always exactly opposing it. It is not obvious why that should work
out so neatly, and this was the point of doing the four calculations in Chaps. 6–9.
Although the system used for those calculations was very simple, and the situations
were carefully chosen to be tractable, the calculations were not so simple, and yet
still yield this simple opposition to acceleration.

Today we appeal to the rule of thumb E = mc2 discussed in Sect. 13.1, so we do
not need to think about what happens within the bound state when it is accelerated.
But hopefully the reader will see that the standard arguments in favour of this rule do
not necessarily imply that it will work. If it does always work, there is presumably
something about the field theories for the interactions within the bound state, viz.,
QED, QCD, etc., that make this happen. Is it just their Lorentz symmetry? Could
that be enough? Heuristically, Lorentz symmetry is only concerned with velocities,
not accelerations.

One idea is that it may be the fact that the corresponding quantum field theories
are renormalisable, which itself traces back to their being gauge theories. The point
is just that the classical self-forces can be treated as contributing to the inertia of a
system precisely because they have the right form to get absorbed on the ma side of
Newton’s second law, i.e., to renormalise the value of m.

That last idea is speculative. In the next couple of sections, we return to standard
practice, and move on to bigger multiplets, viz., the meson nonets and baryon octet
and decuplet. The aim is the same as with the isospin doublet and triplet: to classify
some of the creatures in the particle zoo by finding something in common, i.e., ap-
proximately equal masses within the multiplet, and then to explain their differences.

13.3.4 Light Quark Mesons

We consider only ground state mesons with l = 0, composed of quarks u, d, and
s. The spins of the two quarks can be antiparallel, in which case the system is in
the spin singlet state with s = 0, or parallel, in which case it is in the spin triplet
state with s = 1. The spin 0 light quark mesons constitute the pseudoscalar nonet,
while the spin 1 light quark mesons constitute the vector nonet. These are shown in
Fig. 13.2.

This is unfortunately rather jargonistic, but that is the way things are in any field.
The words ‘pseudoscalar’ and ‘vector’ refer to the spins of the bound states, i.e.,
spin 0 states are scalar under space rotations, while spin 1 are vector. To see the
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1

Fig. 13.2 Light quark mesons with l = 0. Left: Pseudoscalar nonet (spin 0). Right: Vector nonet
(spin 1)

connection with the usual notions of scalar and vector, one needs to know a little
about spinors. The prefix ‘pseudo’ is related to the fact that all these bound states
happen to have negative parity, and while one would expect a vector to change sign
under inversion through the origin, one would expect a scalar to remain unchanged
in value.

We obtain nine mesons by combining one quark u, d, or s, with one antiquark u,
d, or s. Table 13.2 gives the quark flavour content of each meson. The word ‘flavour’
refers to upness, downness, and strangeness. The full meson wave functions are built
up as tensor products of flavour wave functions, spin wave functions, space wave
functions, and colour wave functions:

ψ = ψ(flavour)ψ(spin)ψ(space)ψ(colour) . (13.22)

We will not be able to go into all the details here. Consider this as a taster. Full details
of the construction of spin–flavour wave functions for mesons (and also baryons)
can be found in the excellent theoretical reference [32]. This is known as the SU(6)
model of the quarks and their bound states, because the three flavour states u, d,
and s carry representations of SU(3), spin states carry representations of SU(2), and
SU(3)×SU(2) is a subgroup of SU(6).

The up and down quarks form an isospin doublet

u = |1/2,1/2〉 , d = |1/2,−1/2〉 ,

using the usual ket notation, where the first number 1/2 appearing in each indicates
that the isospin has value I = 1/2, while the second gives the value of the component
I3 =±1/2. The antiquarks also constitute an isospin doublet

d =−|1/2,1/2〉 , u = |1/2,−1/2〉 ,

whence the d has I3 = +1/2 and the u has I3 =−1/2.
When a quark and an antiquark are combined, we obtain an isotriplet
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Table 13.2 Quark flavour content of the mesons in the pseudoscalar and vector nonets. Concerning
the flavour called strangeness, note that conventionally a meson containing one strange quark s has
strangeness −1, while a meson containing one antiquark s has strangeness +1

Pseudoscalar meson Quark flavour content Vector meson Quark flavour content

K0 ds K∗0 ds

K+ us K∗+ us

π− du ρ− du

π0 (uu−dd)/
√

2 ρ0 (uu−dd)/
√

2

η (uu+dd−2ss)/
√

6 ω (uu+dd)/
√

2

η ′ (uu+dd+ ss)/
√

3 φ ss

π+ −ud ρ+ −ud

K− su K∗− su

K0 −sd K∗0 −sd





|1,1〉=−ud ,

|1,0〉= (uu−dd)/
√

2 ,

|1,−1〉= du ,

(13.23)

and an isosinglet

|0,0〉= (uu+dd)/
√

2 , (13.24)

where the first number in each ket indicates the value of I and the second the value of
I3. Mathematically, combining means taking the tensor product 2⊗ 2 of the quark
and antiquark isospin doublets, and the four kets just displayed are an alternative
basis for that, which happen to be eigenstates of operators I and I3 associated with
the total isospin. This parallels the construction of spin states.

For the pseudoscalar mesons, the triplet is identified as the trio of pions, while for
the vector mesons, it corresponds to the three ρ mesons. One makes the hypothesis
that the flavour parts of the wave functions (13.22) for π0 and the ρ0 are neither uu
nor dd, but

π0 , ρ0 = (uu−dd)/
√

2 ,

which means physically that, if one could pull either π0 or ρ0 apart, one would find
a u and a u half the time, and a d and a d the rest of the time. There is obviously a
physical hypothesis hiding away in this kind of construction.

In the isospin model, the strange quark is assumed to have isospin 0. So among
the quark–antiquark bound states involving u, d, and s, we have two isospin singlet
(I = 0) states, viz., ss and the one in (13.24). We make the hypothesis that the physi-
cal states η and η ′ in the pseudoscalar nonet are some linear combinations of these
isosinglet states, and likewise for the physical states ω and φ in the vector nonet. It
turns out that
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η = (uu+dd−2ss)/
√

6 , η ′ = (uu+dd+ ss)/
√

3 , (13.25)

while

ω = (uu+dd)/
√

2 , φ = ss . (13.26)

The fact that the mixing is different for the pseudoscalar and vector nonets reminds
us that these are physical hypotheses, checked by experiment.

The pseudoscalar mixing (13.25) makes η ′ an SU(3) singlet, i.e., it carries a
1D representation of this group, while η and the rest of the pseudoscalar mesons
constitute an SU(3) octet, i.e., they carry an irreducible 8D representation of this
group. This is the original pseudoscalar octet of the famous Eightfold Way. But
according to (13.26), neither ω nor φ is an SU(3) singlet. They are maximally mixed
in the sense that the strange–antistrange combination is kept out in the cold. One
wonders to what extent this kind of feature can be explained by the Standard Model
of particle physics.

As shown in Table 13.2, the strange mesons combine a strange quark with an up
or a down. The three light quarks are said to carry the fundamental representation
of the (approximate) SU(3) symmetry group, denoted by the symbol 3 [just as the
isospin doublet representation of SU(2) was denoted by the symbol 2 when we took
the tensor product 2⊗ 2 of the quark and antiquark isospin doublets]. The three
antiquarks u, d, and s also carry a fundamental 3D representation of SU(3) denoted
by 3. Combining the two, as we have effectively done to construct the nonets, we
find that the tensor product of the 3 and 3 representations can be expressed as a
direct sum of a 1D representation of SU(3) and an irreducible 8D representation:

3⊗3 = 8⊕1 .

But unfortunately, although we are guided by these considerations, SU(3) is only an
approximate symmetry. What shows that it is not exact is the obvious fact that the
particles in the given supermultiplets have different masses.

This is where we come to the thing that interests us here, namely the way inertial
mass is treated in particle physics. One explanation for why the members of these
nonets have a range of masses is simply that the quark components have different
masses. The u and d masses are thought to be similar, one reason why isospin turns
out to be a good SU(2) symmetry, but the s is much more massive, so there is no
surprise that the K mesons are more massive than the π mesons, for example.

On the other hand, the ρ mesons are more massive than the π mesons, despite the
fact that we assume them to have the same quark flavour content. Furthermore, we
assume them to have the same spatial state ψ(space) in (13.22), corresponding to
the n = 1, l = 0 state for whatever potential models the strong force. But, of course,
their spin states ψ(spin) are different, because the π are spin 0, while the ρ are spin
1. The difference in mass of the π and ρ mesons has to be due to the different relative
spin orientations of the quark and antiquark components, i.e., it has to be due to a
spin–spin interaction.
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Note that we are not talking about mass differences within the pion trio, or wi-
thin the ρ meson trio, which are put down to differences between the u and d quark
masses and electromagnetic effects. Here we are discussing the mass splitting that
separates the two trios, i.e., the QCD equivalent of hyperfine splitting in the hy-
drogen ground state, which was basically a QED effect. Recall (13.12) on p. 321,
viz.,

∆Ehf =
8πγpe2

3mmpc2 (Sp·Se)|ψ100(0)|2 .

If the spin–spin coupling in QCD has a similar structure, then it is reasonable to
assume that it will be proportional to the scalar product of the spin vectors S1 and
S2 of the quark and antiquark, and inversely proportional to each of their masses.
So we try to fit the hypothesis

M(meson) = m1 +m2 +A
S1·S2

m1m2
, (13.27)

where A is treated as a fitting parameter, assumed the same for all vector and pseu-
doscalar mesons.

This is a rather optimistic model (the following remarks are due to Griffiths).
The idea is that the factor |ψ100(0)|2 is the same for all these mesons, because they
are supposed to be in the same spatial quantum state. However, we found in (13.13)
that it goes as 1/a3 in the QED case, where a is the Bohr radius, and we found in
(13.19) that the Bohr radius goes as a∼m−1 for a Coulomb potential, where m was
the reduced mass. This would give an m3 mass dependence in the numerator. For a
linear potential, it turns out that a∼m−1/3, so |ψ100(0)|2 ∼m in that case. We keep
the mass dependence in the denominator of (13.27), but we ignore the likely mass
dependence in the numerator.

Another worry with our model (13.27) is that some of the mesons we are discus-
sing contain combinations of quarks with their own antiquarks. In fact, any meson
with I3 = 0 is a superposition of such states, and there is likely to be an annihilation
contribution to the mass, as in (13.16) on p. 325.

The model nevertheless gives quite good results. Since S = S1 +S2,

S1·S2 =
1
2
(S2−S2

1−S2
2) ,

it is easy to show that

S1·S2 =





1
4

h̄2 , for vector mesons (s = 1) ,

−3
4

h̄2 , for pseudoscalar mesons (s = 0) .

If we now insert the values mu = md = 310 MeV/c2 and ms = 483 MeV/c2, a good
fit is obtained by
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Table 13.3 Comparison between experimental pseudoscalar and vector meson masses and mass
estimates using the spin–spin interaction model (13.27). Adapted from [10]

Meson Theoretical mass Experimental mass
[MeV/c2] [MeV/c2]

π 139 138

K 487 496

η 561 548

ρ 775 776

ω 775 783

K∗ 892 894

φ 1031 1020

A = 160
(

2mu

h̄

)2

MeV/c2 .

It leads to the values in Table 13.3. The estimate for η ′ is not included because it is
so poor.

What do we conclude for the purposes of the present book? The thesis here is that
it is worth thinking of inertia as resulting from internal forces within particles. The
notion of force is replaced by the notion of interaction in particle physics, something
that quantum theories are quite capable of handling. Whether or not the above model
is a good one from a quantitative point of view, it is clearly relevant qualitatively.
Indeed, it is standard practice in particle physics to estimate particle masses, and
in particular, explain differences in the masses of otherwise similar particles, on
the basis of internal interactions. This only works, of course, when those particles
are considered to be bound states of other particles, so that there is some internal
structure to play around with.

However, it is still not so obvious why this works. In particle physics, one ap-
plies a rule of thumb: the ‘equivalence’ of mass and energy discussed critically in
Sect. 13.1. On the other hand, the classical (pre-quantum) physics of electroma-
gnetism gives us a good reason, dare one say, a mechanism, for these inertial ef-
fects through the idea of self-force. It appears that this mechanism extends to strong
forces. An interesting line of research would be to provide a quantum picture of this
mechanism, since it is so widely applied.

It is also worth remembering that it is not obvious why EM self-forces always
act so as to oppose accelerations. This was the point in exhibiting the calculations
of Chaps. 6–9. Since self-forces appear to operate in this way for colour-sourced
forces, i.e., the strong force (at least that is what is always assumed), it would be
interesting to know what it is about these theories QED and QCD that leads to such
a qualitatively simple phenomenological result, i.e., a self-force that always exactly
opposes accelerations. It would seem that it must be either something very trivial,
or something very deep. One possible idea was given at the end of the last section.
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Fig. 13.3 Left: Baryon octet. Right: Baryon decuplet. In each figure, rows correspond to constant
strangeness, with the top row being strangeness 0 (no strange quark in the baryon), the second row
strangeness −1 (one strange quark in the baryon), and so on

Table 13.4 Quark flavour content of the baryons in the lowest energy octet and decuplet. In
contrast to Table 13.2, no attempt is made here to give the quark flavour wave functions, which
are more complicated than for the mesons. Octet baryons have spin 1/2, while decuplet baryons
have spin 3/2. Note that conventionally a baryon containing one strange quark s has strangeness
−1, while a baryon containing one antiquark s has strangeness +1

Octet baryon Quark flavour content Decuplet baryon Quark flavour content

∆− ddd

n udd ∆0 udd

p uud ∆+ uud

∆++ uuu

Σ− sdd Σ∗− sdd

Σ0, Λ sud Σ∗0 sud

Σ+ suu Σ∗+ suu

Ξ− ssd Ξ∗− ssd

Ξ0 ssu Ξ∗0 ssu

Ω− sss

13.3.5 Baryons

For completeness, let us see how baryon masses are handled. Once again the treat-
ment here is largely qualitative and based on [10] unless otherwise stated. We shall
consider the baryon octet containing the neutron and the proton, and the baryon de-
cuplet containing the ∆ resonances. These are shown in Fig. 13.3, and their quark
flavour contents are shown in Table 13.4. The octet and decuplet baryons differ in
their spin, which is 1/2 for the octet and 3/2 for the decuplet. The decuplet contains
three quark flavour combinations that do not fit into the octet, viz., uuu, ddd, and
sss.
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Baryon Wave Functions

In order to model the baryon masses within multiplets, or indeed magnetic moments,
one must first write down wave functions. As for the mesons, each baryon has a wave
function of the (tensor product) form

ψ = ψ(flavour)ψ(spin)ψ(space)ψ(colour) . (13.28)

Since each baryon comprises three quarks, the space part is more complicated here
than for the mesons. One can treat the orbital angular momentum as made up of
two orbital angular momenta, viz., the orbital angular momentum L of two of the
quarks about their center of mass, and the orbital angular momentum L′ of this
combination and the third quark about the center of mass of all three. Here we only
consider l = 0 = l′.

Under this hypothesis, the total angular momentum comes entirely from the spins
of the quarks. Each quark has spin 1/2, so their are eight possible spin states for the
baryon:

| ↑↑↑〉 , | ↑↑↓〉 , | ↑↓↑〉 , | ↓↑↑〉 , | ↑↓↓〉 , | ↓↑↓〉 , | ↓↓↑〉 , | ↓↓↓〉 .

These are not eigenstates of the total angular momentum. The quark spins can com-
bine to give a total of 1/2 or 3/2. With the usual notation:

|3/2,3/2〉s = | ↑↑↑〉
|3/2,1/2〉s =

(| ↑↑↓〉+ | ↑↓↑〉+ | ↓↑↑〉)/√3

|3/2,−1/2〉s =
(| ↑↓↓〉+ | ↓↑↓〉+ | ↓↓↑〉)/√3

|3/2,−3/2〉s = | ↓↓↓〉





ψs (spin 3/2) , (13.29)

|1/2,1/2〉12 =
(| ↑↓↑〉− | ↓↑↑〉)/√2

|1/2,−1/2〉12 =
(| ↑↓↓〉− | ↓↑↓〉)/√2

}
ψ12 (spin 1/2) , (13.30)

|1/2,1/2〉23 =
(| ↑↑↓〉− | ↑↓↑〉)/√2

|1/2,−1/2〉23 =
(| ↓↑↓〉− | ↓↓↑〉)/√2

}
ψ23 (spin 1/2) . (13.31)

The states ψs are fully symmetric in the three quarks, while ψ12 are antisymmetric
in the first two and ψ23 are antisymmetric in the last two. The states

|1/2,1/2〉31 =
(| ↓↑↑〉− | ↑↑↓〉)/√2

|1/2,−1/2〉31 =
(| ↓↓↑〉− | ↑↓↓〉)/√2

}
ψ31 (spin 1/2) , (13.32)

are not needed to span the space of possible spin states because the states ψs, ψ12
and ψ23 already span the whole space. In fact,
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2⊗2⊗2 = 4⊕2⊕2 ,

where numbers on the right give the dimensions of the representations ψs, ψ12 and
ψ23, respectively. In fact, it is easy to see that the states ψ31 are not independent in
the vector space sense. For example,

|1/2,1/2〉12 + |1/2,1/2〉23 + |1/2,1/2〉31 = 0 .

Naturally, one could choose other breakdowns of the full spin space 2⊗2⊗2.
The symmetries of these states are important because of the Pauli exclusion

principle, which follows from the full quantum field theory for spin 1/2 particles
like quarks. However, we shall make another bold hypothesis here, namely that the
quarks in the baryon are actually identical fermions, despite the fact that they may
have different colours and flavours. Griffiths describes this as a subtle extension of
the notion of identical particle, because all quarks are treated as different states of
a single particle, regardless of their colour or flavour. However, it is only subtle if
we do it implicitly, as is often the case. Many accounts of physics become subtle in
this way. But physics works by hypothesis, and this is just another hypothesis, with
its weak and its strong points. Its weak point is presumably that flavour is a heavily
broken symmetry.

The Pauli exclusion principle stipulates that our 3-quark states be totally antisym-
metric. What we are saying then is that the full wave function of the baryon given
schematically in (13.28) has to be completely antisymmetric in the three quark po-
sitions, just like the spin states ψs given in (13.29). (By quark positions, here and
in the following, we refer to their mathematical positions in the tensor product, i.e.,
position 1, 2, or 3, not position in space.) We do not know the functional form of
the spatial component ψ(space) because we do not know the interquark potential,
or what stands in for it in the full theory of quantum chromodynamics. However, we
guess that, for the ground state with l = 0 = l′, this part of the baryon wave function
is likely to be symmetric in the three quark positions.

We have just seen that the spin states can be completely symmetric ( j = 3/2),
or partially antisymmetric ( j = 1/2), where j is the total angular momentum in this
case. Regarding the flavour component, there are 27 possible combinations uuu,
uud, udu, duu, udd, . . . , sss, which can be combined linearly into bases for vector
spaces carrying irreducible representations of SU(3), just as the spin combinations
given above carry irreducible representations of SU(2). The bases for the various
possible irreducible representations are displayed in the familiar eightfold-way pat-
terns in Figs. 13.4–13.6.

One more state is required to span the whole space 3⊗ 3⊗ 3. We may take the
completely antisymmetric state

ψa = (uds−usd+dsu−dus+ sud− sdu)/
√

6 . (13.33)

What we have then is a decomposition of the form

3⊗3⊗3 = 10⊕8⊕8⊕1 .
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Fig. 13.4 Fully symmetric baryon flavour states ψs

Fig. 13.5 Partially antisymmetric flavour states ψ12

Another partially antisymmetric octet can be constructed, which would be denoted
ψ31, antisymmetric in the first and third quark positions, but the basis elements for
this irreducible representation of flavour SU(3) are of course expressible as linear
combinations of the basis elements we have already found, since the latter span-
ned the whole 27 dimensional space. In fact, ψ12 + ψ23 + ψ31 = 0. The following
constructions could choose any pair from these partially antisymmetric SU(3) re-
presentations.

Referring to (13.28), we still have to talk about colour. There are more states now,
colour states, and they carry another representation of SU(3), the colour symmetry
group of quantum chromodynamics. This is considered to be an exact symmetry,
in the sense that quarks of different colours but the same flavour have the same
mass, while the flavour SU(3) symmetry is an approximation, because quarks of

ddd (ddu+dud+udd)/
√

3 (uud+udu+duu)/
√

3 uuu

•
(dds+dsd+ sdd)/

√

3
(uds+usd+dus +dsu+ sud+ sdu)/

√

6
(uus+usu+ suu)/

√

3

(dss+ sds+ ssd)/
√

3 (uss+ sus+ ssu)/
√

3

sss

(ud−du)d/
√

2 (ud−du)u/
√

2

(ds− sd)d/
√

2

[

2(ud−du)s+(us− su)d− (ds− sd)u
]

/
√

12
•

•

(us− su)u/
√

2

[

(us− su)d+(ds− sd)u
]

/2

(ds− sd)s/
√

2 (us− su)s/
√

2
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d(ud−du)/
√

2 u(ud−du)/
√

2

d(ds− sd)/
√

2

[

2s(ud−du)+d(us− su)−u(ds− sd)
]

/
√

12
•

•

u(us− su)/
√

2

[

d(us− su)+u(ds− sd)
]

/2

s(ds− sd)/
√

2 s(us− su)/
√

2

1

Fig. 13.6 Partially antisymmetric flavour states ψ23

different flavours have different masses. Mass is all important here. When masses
are different within a multiplet, i.e., within a set of states carrying an irreducible
representation of the putative symmetry group, this means that the operators gene-
rating the latter are not commuting properly with a mass (energy) operator. It is in
precisely this sense that it is not a good symmetry.

However, the current hypothesis is that mass is constant over colour multiplets.
So we can construct a colour decuplet, colour octets, and so on. Looking at the
flavour multiplets, we only have to systematically replace u → red, s→ green, and
d → blue, for example, and we have a suitable set of irreducible representations
of the colour SU(3) symmetry group. But now we make a further hypothesis (see
p. 327): all naturally occurring particles are colourless (or strictly, in some cases,
white). A meson can contain a red and an antired quark, and a baryon must contain
one of each colour, whence we ought to say that it is white.

Well, the colour analogy is not perfect, even if the symmetry may be! It is better
to stick to the mathematical formulation and state the hypothesis like this: every
naturally occurring particle is in a colour singlet state. This state is the analogue of
(13.33), viz.,

ψ(colour) = (rgb− rbg+gbr−grb+brg−bgr)/
√

6 . (13.34)

Since each baryon state of the form (13.28) is going to contain this same state as
a (tensorial) factor, it is usually just dropped from the proceedings, and we retain
only the absolutely crucial fact that it is totally antisymmetric in the three quark
positions.

This is crucial because it means that, in combination with the Pauli principle,
which follows from quantum field theory, the rest of the baryon state, i.e., the ten-
sor product of all the other factors, must be totally symmetric in the three quark
positions. Since we guess that ψ(space) is symmetric for states with l = 0 = l′, the
product of ψ(spin) and ψ(flavour) must be symmetric. Following Griffiths [10], we
give examples of a decuplet state and an octet state:
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• If we want a symmetric spin configuration, we see that this must go with a sym-
metric flavour state. This gives the spin 3/2 baryon decuplet

ψ(baryon decuplet) = ψs(spin)ψs(flavour) .

We can obtain the spin–flavour wave function for ∆+, for example. Let us assume
that it is in the spin state m j =−1/2, so

|∆+;3/2,−1/2〉 =
[
(uud+udu+duu)/

√
3
][

(↓↓↑+ ↓↑↓+ ↑↓↓)/
√

3
]

=
1
3

[
u(↓)u(↓)d(↑)+u(↓)u(↑)d(↓)+u(↑)u(↓)d(↓)

+u(↓)d(↓)u(↑)+u(↓)d(↑)u(↓)+u(↑)d(↓)u(↓)

+d(↓)u(↓)u(↑)+d(↓)u(↑)u(↓)+d(↑)u(↓)u(↓)
]

.

In practical terms, this means that if we could sample the quarks in such a state,
we would expect to find that in 1/9 of cases the first quark would be a d with spin
up, while in 4/9 of cases it would be a u with spin down.

• The baryon octet states are more complicated than this. A fully symmetric com-
bination is obtained by putting together states of mixed symmetry, using the
fact that the product of two antisymmetric wave functions is symmetric. We
thus observe that ψ12(spin)ψ12(flavour) is symmetric in the first two quark
positions, while ψ23(spin)ψ23(flavour) is symmetric in the second two, and
ψ31(spin)ψ31(flavour) in the third. It turns out that, if we add these three combi-
nations, the result is fully symmetric. So with a suitable normalisation coefficient,

ψ(baryon octet) =
√

2
3

[
ψ12(spin)ψ12(flavour)+ψ23(spin)ψ23(flavour)

+ψ31(spin)ψ31(flavour)
]

.

As an example, consider the spin–flavour wave function for a spin up proton:

|p;1/2,1/2〉 =
√

2
3

[
1
2
(↑↓↑ − ↓↑↑)(udu−duu)+

1
2
(↑↑↓ − ↑↓↑)(uud−udu)

+
1
2
(↑↑↓ − ↓↑↑)(uud−duu)

]

=
2

3
√

2
u(↑)u(↑)d(↓)− 1

3
√

2
u(↑)u(↓)d(↑)

− 1
3
√

2
u(↓)u(↑)d(↑)+permutations . (13.35)
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The task of constructing these bound states is not really trivial. However, as presen-
ted here, it is just a mathematical game. The reader should be asking physical ques-
tions about it. There is a tendency in textbooks to get on with the theory and apply
it, and forget the intellectual struggle of those who originally built it up, or even the
original problem they were trying to solve. Not only does this give a misleading aura
of finality to physical theory, but it encourages students to become mathematicians
rather than physicists. Even though the above manipulations are quite sophisticated,
the mathematics of physics is much easier than physics.

The book by Griffiths stands out from the crowd because it does mention the
physics from time to time. Here is one of the insights. The corners of the baryon
decuplet contain three quarks of the same flavour, viz., uuu, ddd, and sss. They are
necessarily symmetric flavour states. This means that they must go with symmetric
spin states, so they must have j = 3/2. When there are two identical flavours, e.g.,
uud, there are three arrangements, viz., uud, udu, and duu, so we can build a sym-
metric linear combination that belongs to the decuplet and two linear combinations
of mixed symmetry that belong to the octets. Finally, when all three of the quarks
have different flavours, e.g., uds, there are six possibilities: the completely symme-
tric linear combination completes the decuplet, the completely antisymmetric linear
combination is an SU(3) singlet, and the other four go into building the two octets.

But colour plays a key role here, even if the colour component of the wave func-
tion has not been included explicitly. If colour were not part of this, we would be
seeking antisymmetric spin–flavour wave functions. The spin 3/2 states would have
to go with the flavour singlet (13.33), which is antisymmetric. A spin 1/2 octet can
be constructed, but instead of the decuplet, we would have only one spin 3/2 ba-
ryon. This was why colour was originally introduced, because it was felt that the
Pauli principle had to be maintained. This was the first problem that colour solved.

Another good reference for concrete applications of symmetry groups in physics
is [32]. The baryon states are constructed in much more detail, with more explana-
tion of the mathematical features, although the physics is often taken as understood.

Baryon Magnetic Moments

The magnetic dipole moment of a spin 1/2 particle of charge q and mass m is

µ =
q

mc
S , (13.36)

where S is its spin vector. It is because this depends on the mass that it is interesting
to discuss it in the present context. We have been discussing baryons in their ground
state, with l = 0 = l′, so the net magnetic moment will be the vector sum of the
moments of the three quarks taken separately, viz.,

µ = µ1 + µ2 + µ3 .
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According to (13.36), the different quark flavours correspond to different magnetic
dipole moments, because µ depends on the charge and the mass. It has magnitude

µ =
qh̄

2mc
, (13.37)

so µz has this value in the spin up state, for which Sz = h̄/2, and minus this value
in the spin down state. If the charge is negative, the magnetic moment points in the
opposite direction to the spin. For the three quark flavours, we have

µu =
2
3

eh̄
2muc

, µd =−1
3

eh̄
2mdc

, µs =−1
3

eh̄
2msc

. (13.38)

The magnetic moment of an octet baryon B in its spin up state (recall that the octet
baryons have spin 1/2) is

µB = 〈B ↑ |(µ1 + µ2 + µ3)z|B ↑〉=
2
h̄

3

∑
i=1
〈B ↑ |µiSiz|B ↑〉 , (13.39)

where the sum is over the three quarks in the baryon. We could also do this for
decuplet baryons, but we have implicitly considered spin 1/2 here rather than spin
3/2.

Using the wave function (13.35), we can calculate the magnetic moment of the
proton as follows. The first term in (13.35) is

2
3
√

2
u(↑)u(↑)d(↓) .

We thus evaluate

(µ1S1z + µ2S2z + µ3S3z)|u(↑)u(↑)d(↓)〉=
(

µu
h̄
2

+ µu
h̄
2
−µd

h̄
2

)
|u(↑)u(↑)d(↓)〉 .

According to (13.39), the first term in the proton wave function thus contributes

(
2

3
√

2

)2 2
h̄

3

∑
i=1
〈u(↑)u(↑)d(↓)|µiSiz|u(↑)u(↑)d(↓)〉=

2
9
(2µu−µd) .

Needless to say, the quark wave functions are normalised so that, for example,

〈u(↑)|u(↑)〉= 1 , 〈u(↑)|u(↓)〉= 0 .

The second and third terms in (13.35) are each found to give µd/18. The other six
terms in (13.35) are found by permutations of the first three, hence give the same
results, and the grand total for the magnetic moment of the proton is

µp = 3
[

2
9
(2µu−µd)+

1
18

µd +
1
18

µd

]
=

1
3
(4µu−µd) . (13.40)
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Table 13.5 Baryon octet magnetic moments as calculated from the octet wave functions and ex-
pressed in terms of the quark magnetic moments µu, µd, and µs

Baryon Calculated magnetic moment

p
1
3
(4µu−µd)

n
1
3
(4µd−µu)

Λ µs

Σ+ 1
3
(4µu−µs)

Σ0 1
3
(2µu +2µd−µs)

Σ−
1
3
(4µd−µs)

Ξ0 1
3
(4µs−µu)

Ξ−
1
3
(4µs−µd)

The other octet magnetic moments can be calculated and expressed in terms of the
quark magnetic moments µu, µd, and µs, which we do not know, of course, because
they depend on the quark masses. Table 13.5 gives the results.

One approach is to take the masses of the quarks when they are components of
baryons as given in Sect. 13.3.1, feed them into (13.38), and compare the calculated
values with measured values. For example, with mu = md = 363 MeV/c2, (13.40)
gives

µp = 2.79µnuclear ,

where µnuclear is the nuclear magneton, i.e., the magnetic diple moment of the proton
according to (13.37) if one does not take into account its being a composite particle,
given by

µnuclear :=
eh̄

2mpc
= 3.152×10−18 MeV/gauss .

The measured value for µp is 2.793µnuclear. Doing this for the other octet baryons
gives reasonable results, which is presumably a confirmation of sorts for the values
of the quark masses given in Sect. 13.3.1. But where did those mass values come
from? Griffiths does not say, but we can be sure of one thing: they are already model
dependent. So this would in fact be a confirmation for some model of the bound
state.

Another approach here is simply to assume that the up and down quarks have
equal mass, i.e., mu = md, whence (13.38) implies that

µu =−2µd ,
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then note that, from the two formulas in Table 13.5,

µn

µp
=−2

3
.

The experimental value, which is very accurately known, is

µn

µp

∣∣∣∣
exp

= 0.68497945±0.00000058 ,

which compares reasonably well. This presumably confirms the idea that the up and
down quarks have similar masses.

However, it does raise the question of what masses should go in the formulas
(13.38). Should it be the mysterious values of the quark masses when they are bound
in baryons? Or should it perhaps be their masses when free, if indeed they can be
free? The formulas (13.38) assume that the individual quarks are truly elementary
spin 1/2 particles, i.e., not themselves composite, and the mass one usually feeds into
this formula is normally the rest mass of the particle. Of course, when the quarks are
bound in a baryon, one would expect them to have kinetic energies on a par with the
binding potential (virial theorem). Is it due to their motions within the system that
their masses differ from their free masses, by the usual γ factor of special relativistic
dynamics? And if that is so, should it not be their free masses that we are proposing
to be equal by the above result?

Another discussion of these same issues can be found in [32, Sect. 8.13]. A fur-
ther possibility here is to express µu, µd, and µs in terms of the known value µnuclear
of the nuclear magneton by first solving the linear equations





µp =
1
3
(4µu−µd) ,

µn =
1
3
(4µd−µu) ,

µΛ = µs ,

to obtain




µu =
1
5
(µn +4µp) ,

µd =
1
5
(µp +4µn) ,

µs = µΛ ,

then using the measured values

µp = 2.793µnuclear , µn =−1.913µnuclear , µΛ =−0.613µnuclear .

This leads to
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Table 13.6 Comparison between measured baryon octet magnetic moments and predictions from
the octet wave functions in conjunction with the results of (13.41) [32]

Baryon Calculated magnetic moment Predicted [µnuclear] Measured [µnuclear]

Σ+ 1
3
(4µu−µs) 2.67 2.379±0.020

Σ0 1
3
(2µu +2µd−µs) 0.76 –

Σ−
1
3
(4µd−µs) −1.09 −1.14±0.05

Ξ0 1
3
(4µs−µu) −1.44 −1.250±0.014

Ξ−
1
3
(4µs−µd) −0.49 −0.69±0.04

µu = 1.852µnuclear , µd =−0.972µnuclear , µs =−0.613µnuclear . (13.41)

With these values, we can then go back to Table 13.5 and make predictions for the
magnetic moments of the remaining octet baryons. We obtain Table 13.6 [32].

The agreement in the table is reasonable. But there is another thing we can do
with the results (13.41). If we assume that the quarks are elementary fermions with
spin 1/2, then we have the relations (13.38) for their magnetic moments, so we can
actually directly estimate mu, md, and ms, with the results [32]:

mu = 338 MeV/c2 , md = 322 MeV/c2 , ms = 510 Mev/c2 . (13.42)

These look similar in order of magnitude to the quark masses given by Griffiths (see
Sect. 13.3.1) when the quarks participate in baryons. But are these masses supposed
to be rest masses?

It is interesting to read the comment by Greiner and Müller in [32]. They
find these masses rather small. The point is that no particles with masses below
10 GeV/c2 have been found in particle accelerators that could be intepreted as
quarks. They should be relatively easy to spot, because of their fractional charge.
This is the problem of quark confinement. They suggest that free quarks might have
masses of 100 GeV/c2 or more, and suggest that this does not contradict the state-
ment that mquark ∼ 330 MeV, because quarks inside hadrons are bound particles and
therefore their mass is reduced by the binding energy. However, what is reduced in
a bound state is only the mass of the bound state as compared with the sum of the
masses of its components. Surely, the mass of a point particle component could not
be changed by its being bound?

Greiner and Müller then shelter behind a proviso: one should really be talking
about mquark as an energy eigenvalue, i.e., one should make the switch from mass
to energy here. However, there remains our question of Sect. 13.1: why does energy
have inertia? There is an avoidance of questions raised by our classical understan-
ding, and also the perduring physical question as to why some objects resist accele-
ration. And coming back to the specific route to the results (13.42), we have to ask
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what physical quantity mquark should go into a relation like

µquark =
Qquarkeh̄
2mquarkc

,

where Qquark takes the value 2/3 for u and −1/3 for d and s.

Baryon Masses

Even if flavour were a perfect SU(3) symmetry, all the octet baryons would still not
have the same mass, and neither would all the decuplet baryons have the same mass.
The three quark flavours cause the quarks in which they reside to have different
masses, and this already messes up the flavour SU(3) symmetry. But Table 13.4
shows that Λ and Σ0 in the baryon octet have the same content with regard to flavour,
and they are found experimentally to have different masses, viz., mΛ = 1114 MeV/c2

and mΣ0 = 1193 MeV/c2. And perhaps even less surprisingly, a particle (resonance)
like ∆+ has a different mass to the proton, despite being made up of two u quarks
and one d quark.

We know what is going on here from the discussion of the hyperfine splitting of
energy levels in the hydrogen atom (see Sect. 13.2.2). There is a spin–spin interac-
tion within the bound system. We shall adopt the same rather cavalier approach to
modelling this as we did in Sect. 13.3.4 [see in particular (13.27) on p. 343], making
the hypothesis that

m(baryon) = m1 +m2 +m3 +A
(

S1·S2

m1m2
+

S2·S3

m2m3
+

S3·S1

m3m1

)
, (13.43)

where mi and Si are the mass and spin of the i th quark in the baryon, and A is a
constant to be determined by looking for a best fit (not the same as the one we had
for the meson masses). All the comments made with regard to (13.27) are relevant
here too.

Since the total angular momentum J is just J = S1 +S2 +S3 for the case we are
considering in this chapter where there is absolutely no orbital angular momentum,
we have a useful result

J2 = (S1 +S2 +S3)2 = S2
1 +S2

2 +S2
3 +2(S1·S2 +S2·S3 +S3·S1) ,

which leads to

S1·S2 +S2·S3 +S3·S1 =
1
2

h̄2
[

j( j +1)− 9
4

]
,

and therefore,
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S1·S2 +S2·S3 +S3·S1 =





3
4

h̄2 , for j = 3/2 (decuplet) ,

−3
4

h̄2 , for j = 1/2 (octet) .

This is useful in analysing (13.43) when m1 = m2 = m3, a rather special case admit-
tedly. However, we shall take mu = md as a reasonable approximation. This gives
the neutron and proton masses as

mp = mn = 3mu− 3
4

h̄2

m2
u

A ,

while all four ∆ resonances in the decuplet get the mass

m∆ = 3mu +
3
4

h̄2

m2
u

A ,

and Ω gets the mass

mΩ = 3ms +
3
4

h̄2

m2
s

A .

In the decuplet, the spins of any pair of quarks are parallel, since each baryon has
spin 3/2, so

(S1 +S2)2 = (S2 +S3)2 = (S3 +S1)2 = 2h̄2 .

Hence, from results like

(S1 +S2)2 = S2
1 +S2

2 +2S1·S2 ,

we have

S1·S2 = S2·S3 = S3·S1 = h̄2/4 .

We thus obtain

mΣ∗ = 2mu +ms +
h̄2

4

(
1

m2
u

+
2

mums

)
A

and

mΞ∗ = mu +2ms +
h̄2

4

(
1

m2
s

+
2

mums

)
A .

By similar, slightly more complicated reasoning, we obtain for the remaining octet
masses [10]:
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Table 13.7 Estimating baryon octet and decuplet masses with the assumption mu = md and using
the spin–spin interaction model (13.43) with A = 50(2mu/h̄)2 MeV/c2

Baryon Predicted mass [MeV/c2] Measured mass [MeV/c2]

n, p 939 939

Λ 1116 1114

Σ 1179 1193

Ξ 1327 1318

∆ 1239 1232

Σ∗ 1381 1384

Ξ∗ 1529 1533

Ω 1682 1672

mΣ = 2mu +ms +
h̄2

4

(
1

m2
u
− 4

mums

)
A ,

mΛ = 2mu +ms− 3
4

h̄2

m2
u

A ,

and

mΞ = 2ms +mu +
h̄2

4

(
1

m2
s
− 4

mums

)
A .

If we take the quark masses as given in Sect. 13.3.1, then we have only one
parameter to play around with, viz., A. It turns out that the best value is A =
50(2mu/h̄)2 MeV/c2, which gives Table 13.7.

Since we do not know where Griffiths obtained the values for mu, md, and ms
when they belong to a baryon, a better approach here might be to adjust these too.
Perhaps that is where they come from. In any case, the fit is good, despite the crudity
of the model (see the comments due to Griffiths in the meson case). So, not unexpec-
tedly, spin–spin interactions contribute to the inertia of the system as a whole, either
positively or negatively. Here we have another example of the classical self-force
mechanism in a quantum guise.

But once again, looked at from this angle, and having seen the self-force calcu-
lations in Chaps. 6–9, there remains something of a mystery about why these spin–
spin interactions should always make just the right self-force contribution, whatever
motion the baryon has, to contribute to its inertia in this way. The explanation, if not
trivial, is presumably deep.
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13.3.6 Coleman–Glashow Relation

The Coleman–Glashow relation relates mass splittings between several pairs of par-
ticles within a multiplet like the baryon octet [32]:

mn−mp +mΞ− −mΞ0 = mΣ− −mΣ+ . (13.44)

The aim in this section is just to see that this also derives by considering the possible
effects of electromagnetic interactions within the multiplet. The discussion will be
somewhat qualitative. Full details can be found in [32].

There are two isospin doublets and one isospin triplet in the baryon octet:

T = 1/2 n , p ∆M ∼ 2 MeV/c2 Y = 1

T = 1 Σ− , Σ0 , Σ+ ∆M ∼ 8 MeV/c2 Y = 0

T = 1/2 Ξ− , Ξ0 ∆M ∼ 7 MeV/c2 Y =−1

These constitute the rows of the display in Fig. 13.3 left, which uses the value of the
isospin component T3 as the horizontal axis and the value of the hypercharge Y as
the vertical axis. Note that Λ is an isospin singlet.

The mass splittings ∆M within each isospin multiplet can be at least partly explai-
ned by electromagnetic interactions, precisely because the charge Q is not constant
over any given isospin multiplet. They are also partly explained by the different
masses of the constituent quarks. These mass splittings correspond to about 1% of
the total particle mass in each case, and the isospin symmetry is said to be weakly
broken.

States of a given isospin multiplet are transformed into one another by applying
the operators

T± :=
1
2
(T1± iT2) ,

where T1 and T2 were introduced in Sect. 13.3.3. For example, with τi := 2Ti, i =
1,2,3, which are just the Pauli matrices, and with τ± := (τ1± iτ2)/2,

τ+|n〉= |p〉 , τ−|p〉= |n〉 .

The Ti, i = 1,2,3, form a basis for the Lie algebra of SU(2).
But the flavour symmetry group we implement here, at least approximately, is

SU(3), which contains SU(2) as a subgroup in various ways. The Lie algebra of
SU(3) contains the Lie algebra of SU(2) in various ways too. Another version of
the Lie algebra of SU(2) is spanned and generated by the three U-spin operators
Ui, i = 1,2,3, which can be used to analyse the octet representation of SU(3) into
U-spin multiplets in an exactly analogous way to the the isospin operators, but with
the charge operator Q in the place of the hypercharge operator Y . The octet baryons
then correspond to the following three U-spin multiplets:
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U = 1/2 Σ− , Ξ− ∆M ∼ 124 MeV/c2 Q =−1

U = 1 n , Σ0 , Ξ0 ∆M ∼ 374 MeV/c2 Q = 0

U = 1/2 p , Σ+ ∆M ∼ 251 MeV/c2 Q = 1

The states of any given U-spin multiplet have the same charge. One can draw a new
picture of the baryon octet in the (U,Q) plane, analogous to the one in the (T,Y )
plane, only now, the rows are U-spin multiplets, over each of which the charge is
constant. Strictly speaking, Σ0 is not an eigenstate of the U-spin operator U2, and Λ
is not a U-spin singlet. Greiner and Müller show that the U3 = 0 eigenstate of the
U-spin triplet is in fact [32]

χ :=
1
2
(
Σ0 +

√
3Λ

)
,

while the U-spin singlet is

φ :=
1
2
(√

3Σ0−Λ
)

.

So far this is just mathematics. What is the use of it? The reason that charge is
constant over each U-spin multiplet is of course that [Q,U3] = 0. The electroma-
gnetic interaction should not break U-spin symmetry, but the strong interaction may
do so. Indeed, the mass splittings for the U-spin multiplets given above are of order
100 MeV, or roughly 10% of the mass of each particle. How can we deduce anything
here?

Well, let us assume that the mass of a baryon results partly from the strong
interaction, which conserves isospin, and partly from the EM interaction, which
conserves U-spin. By the latter, it seems reasonable to conclude that EM contribu-
tions to the masses are equal within any given U-spin multiplet:

δmp = δmΣ+ , δmn = δmΞ0 , δmΣ− = δmΞ− , (13.45)

where δm refers to the EM contribution to the baryon mass in each case. But if
there is no other interaction to interfere with the degeneracy of the multiplet, i.e.,
the common mass across the multiplet, then we expect, for example,

mn−δmn = mp−δmp , (13.46)

since the left-hand side is just the strong contribution to the neutron mass and the
right-hand side is just the strong contribution to the proton mass, and n and p be-
long to the same isospin multiplet, so their masses are expected to include the same
contributions from the strong interaction. Likewise,

mΞ− −δmΞ− = mΞ0 −δmΞ0 , mΣ− −δmΣ− = mΣ+ −δmΣ+ . (13.47)

Combining (13.45), (13.46), and (13.47), we deduce the Coleman–Glashow relation
(13.44) given at the beginning of this section. What we find experimentally is
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mn−mp = 1.3 MeV/c2 , mΞ− −mΞ0 = 6.5±0.7 MeV/c2 ,

mΣ− −mΣ+ = 8.0 MeV/c2 ,

which accords reasonably with (13.44).
There is thus some evidence for the above assumptions. Let us just make two

points:

• When Greiner and Müller assume that the EM contributions to the baryon masses
are equal within any given U-spin multiplet, they say explicitly that this implies
that the radii of the particles have to be the same. They are clearly thinking of the
Coulomb energy in the EM fields around charged spheres. This is fair enough in
the context, because their discussion at this point is intended to lie outside the
framework of the quark model.

• Once we consider the baryons in the octet to be made up of u, d, and s quarks,
the way we view the EM contributions to mass changes somewhat, as stressed on
several occasions in this book. The point is that the baryons are now considered
to be made up of three point particles with different charges. However, within a
given U-spin multiplet, two baryons, e.g., n and Ξ0, are each made up of a trio of
quarks with the same set of charges, e.g., n is udd and Ξ0 is uss, so each contains a
particle of charge +2/3 and two particles of charge−1/3. In this respect, we can
understand that the EM contribution to mass should be similar for each baryon
in a given U-spin multiplet.

Concerning the second point there, recall the situation with n and p. One could not
suppose that the EM contribution to mn would be zero just because the neutron is
electrically neutral.

So what messes up the U-spin symmetry? The operator U may or may not com-
mute with the Hamiltonian Hstrong of the strong interaction, but in any case, the u, d,
and s have different intrinsic masses. So we come back to a problem that awaits us
even if we deal with all issues of symmetry breaking in the particle multiplets: why
do the quark flavours have different masses? Note on the other hand that, in (13.46)
for example, the sum of the quark masses is considered to be roughly equal in both
n and p if we assume that mu ≈ md. Likewise for each relation in (13.47), the sums
of the quark masses are roughly equal in the particles on either side of each relation.

13.3.7 Gell-Mann–Okubo Mass Formula

If the flavour SU(3) symmetry were an exact symmetry of the strong interactions,
then all states belonging to one SU(3) multiplet would be energetically degenerate,
i.e., they would have the same mass. In the baryon octet, the mass splitting is of the
order of 10%, so the SU(3) symmetry is more strongly broken than the isospin sym-
metry by the EM interaction, or whatever else breaks it. Mass splittings in isospin
multiplets are of the order of 1%.
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Greiner and Müller imagine the Hamiltonian of the strong interaction as splitting
into two parts [32, Sect. 8.9]:

Hstrong = Hss +Hms ,

where Hss is superstrong, meaning that it is SU(3) invariant, and Hms is medium
strong, meaning that it breaks SU(3) invariance. The mass of a given baryon is

M = 〈Hstrong〉= 〈Hss〉+ 〈Hms〉 . (13.48)

In this picture, the first term on the right-hand side is constant over any multiplet,
i.e., Hss sees the multiplet as degenerate, while the second term involving Hms breaks
that degeneracy.

This is most easily arranged by having Hss commute with all members of the fla-
vour SU(3) group. Then if any member |ψ〉 of a given multiplet is an eigenvector of
Hss with a given eigenvalue E, since a multiplet carries an irreducible representation
of SU(3), so that any member of the multiplet can be obtained as A|ψ〉 for some
A ∈ SU(3), we find that all members of the multiplet are eigenvalues of Hss with the
same eigenvalue E. Even if the member |ψ〉 of the multiplet is not an eigenvector of
Hss, it is easy to see that

〈ϕ|Hss|ϕ〉= 〈ψ|Hss|ψ〉 ,

for all other ϕ in the multiplet if Hss commutes with all members of the flavour
SU(3) group, precisely because a multiplet carries an irreducible representation of
the group. And one way to get Hss to commute with all members of SU(3) is to
build it from the Casimir operators, which are matrices commuting with all the
group generators, hence with all elements of the group. See [32] for the details of
all this theory.

We thus consider Hms as being constructed from generators of the flavour SU(3)
symmetry group, rather than just Casimir operators. As a generator is an arbitrary
matrix in the Lie algebra of the group, it is clear that no generator can commute with
all elements of the group. For the present purposes, we neglect EM mass splitting, so
we consider members of an isospin multiplet to have the same mass. We arrange for
this by having the symmetry breaking part Hms of the strong interaction Hamiltonian
Hstrong = Hss +Hms commute with Ti, i = 1,2,3, i.e.,

[Hms,Ti] = 0 , i = 1,2,3 .

Now it transpires that only one generator of SU(3) commutes with all the Ti, and
this is the hypercharge operator Y , which is just

Y = 2(Q−T3) ,

where Q is the charge operator. (Note that, for the baryons, the hypercharge is related
to the strangeness S by Y = S+1, with the strange convention that the strange quark
has strangeness −1.) We thus propose
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Hms = bY ,

for some constant b.
Multiplets like the baryon octet or decuplet are sets of states |T T3Y 〉 that are

simultaneously eigenstates of T2, T3, and Y . We consider Hms as a perturbation, i.e.,
we assume 〈Hms〉 ¿ 〈Hss〉, whence the perturbation to the main mass contribution
a := 〈T T3Y |Hss|T T3Y 〉, constant over the whole multiplet, will be

〈T T3Y |Hms|T T3Y 〉= bY ,

according to first order perturbation theory. (We abuse notation here by using the
same symbol Y for the hypercharge operator and its eigenvalue.)

So the outcome of this reasoning is a mass formula M = a + bY , where a and b
are constant over any multiplet, but Y varies. In fact, a is the constant expectation
value of Hss in the given multiplet. Now consider the baryon decuplet. We are saying
that

mΩ− = a−2b , mΞ∗ = a−b , mΣ∗ = a , m∆ = a+b ,

whence we would hope to find that

mΩ− −mΞ∗ = mΞ∗ −mΣ∗ = mΣ∗ −m∆ . (13.49)

Note that this was originally used by Gell-Mann to predict the mass of the as yet
undiscovered Ω−. Earlier, we ignored mass splitting due to EM interactions, but at
this point we can take it into account by comparing only decuplet baryons with the
same charge, i.e., in the same U-spin multiplet. The result is:

mΩ− −mΞ∗− = 137±1 MeV/c2 ,

mΞ∗− −mΣ∗− = 148±1 MeV/c2 ,

mΣ∗− −m∆− = 148±5 MeV/c2 .

This is a good agreement, but the idea fails for the baryon octet. The problem is that
YΣ0 = YΛ, so it would predict mΣ0 = mΛ, whereas in fact mΣ0 −mΛ = 77 MeV.

To obtain a better model, we observe that both T2 and Y 2 commute with Ti,
i = 1,2,3, so we make the hypothesis that

Hms = bY + cT2 +dY 2 ,

for some constants b, c, and d. In states |T T3Y 〉, this has expectation value

M = a+bY + cT (T +1)+dY 2 , (13.50)

with four parameters to fit now. The argument is much less convincing now. The
more parameters we allow ourselves, the easier it is to get a good fit.

However, (13.50) also encounters a problem. In fact, it destroys the relations
(13.49) that worked so well for the decuplet, for most choices of c and d. What one
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does is to demand that, in the decuplet, cT (T + 1)+ dY 2 have the form x + yY , for
some constants x and y. This can be done [32] by making the choice d = −c/4, so
this constraint removes one of our parameters. The result is the well known Gell-
Mann–Okubo mass formula

M = a+bY + c
[

T (T +1)− 1
4

Y 2
]

, (13.51)

where the three parameters are supposed to be constant over any given multiplet.
For the baryon octet, it implies

mN = a+b+
1
2

c , mΞ = a−b+
1
2

c , mΣ = a+2c , mΛ = a ,

where N is either n or p, and hence,

1
2
(mN +mΞ) =

3
4

mΛ +
1
4

mΣ .

Once again, to minimise EM effects, we apply this to the neutral particles and find

1
2
(mn +mΞ0) = 1127.1±0.7 MeV/c2 ,

3
4

mΛ +
1
4

mΣ0 = 1134.8±0.2 MeV/c2 ,

which is a good result, because the 7.7 MeV discrepancy is much lower than the
100 MeV mass splitting within the baryon octet.

A point in favour of (13.51) is that constants a, b, and c can be found to make it
fit other SU(3) multiplets, and not just baryon multiplets, but also meson multiplets.
What is interesting is that the formula is modified for mesons: it does not apply to the
masses, but to the squares of the masses. Greiner and Müller justify this by the fact
that baryons are fermions satisfying the Dirac equation, which contains linear terms
in the energy, while mesons are bosons satisfying the Klein–Gordon equation, which
contains squares of masses. Griffiths just says that the reasons remain something of
a mystery [10, Exercise 1.5].

There are two points to make about the Gell-Mann–Okubo mass relation in the
context of the present book:

• The analysis here makes no reference to quark components of the particles, or
any other components. In this sense, the particles are not treated explicitly as
bound states.

• The key relation is (13.48), because it shows how inertial mass is understood for
these particles as the expectation value of interaction energies. Since an interac-
tion requires several interacting parts, these particles are being treated implicitly
as bound states. This is therefore a quantum theoretical version of the self-force
idea.

This mass relation shows just how far one can go by heuristic considerations invol-
ving symmetries, particularly in the context of the quantum theory, without expli-
citly modelling any internal structure.
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13.3.8 Gürsey–Radicati Mass Formula

This is the generalisation of the Gell-Mann–Okubo mass formula to the SU(6)
flavour–spin quark model discussed earlier. Here the octet and decuplet baryons
are considered explicitly as being made up of quarks, although the masses of the
different quark flavours making up the bound states remain unexplained. Further-
more, no very explicit use of the quark structure is made. One simply adds a spin
term to the previous result (13.51) to allow for the formula to work for both octet
and decuplet baryons at the same time:

M = a+bY + c
[

T (T +1)− 1
4

Y 2
]
+dS(S +1) . (13.52)

We now have an extra parameter d, but the formula has to work with a, b, c, and d
constant over both the baryon octet and the baryon decuplet.

The rationale here is that the octet (spin 1/2) and the decuplet (spin 3/2) constitute
a 56-plet of the SU(6) group (containing 2× 8 octet states and 4× 10 decuplet
states), and the symmetry breaking part Hms of the Hamiltonian should have the
form

Hms = a+bY + c
(

T2− 1
4

Y 2
)

+dS2 ,

so that the last term distinguishes between octet and decuplet baryons. (Recall that
the octet baryons have S2 = 3h̄2/4, while the decuplet baryons have S2 = 15h̄2/4.)

By considering the experimental values for the masses of n, Λ, Σ0, Σ∗0, and Ξ∗0,
we obtain [32]

a = 1066.6 MeV/c2 , b =−196.1 MeV/c2 ,

c = 38.8 MeV/c2 , d = 65.3 MeV/c2 ,

which imply mΞ0 = 1331 MeV/c2 (experimental value 1318 MeV/c2), m∆0 =
1251.2 MeV/c2 (experimental value 1232 MeV/c2), and mΩ− = 1664.9 MeV/c2

(experimental value 1672.4 MeV/c2).
Despite the specific reference to the SU(6) model, the comments concerning the

Gell-Mann–Okubo mass relation apply here too. We only pay lip service to the
quark components. The force of the argument comes from symmetry considera-
tions. The same game can be played when charm is included, with an SU(8) mass
formula [32, Sect11.7]. For the baryons, one just adds a constant multiple of the
charm operator to (13.52). As far as charmed baryons have been identified, it seems
to work reasonably well. The corresponding formula for mesons, with the myste-
rious squared masses in it, has to be built with a square of the charm operator, and
the results are mediocre.
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13.4 Higgs Mechanism

What do we know about the masses of those particles that are considered to be truly
elementary today? Why do different quark flavours have different masses? Why are
there generations of quarks: (u,d), (s,c), and (b,t), getting more and more massive?
Why are there generations of leptons: e, µ, and τ, getting more and more massive?
Why do the intermediate vector bosons W± and Z have the masses they do? Some of
the answers, or partial answers, are provided by the Higgs mechanism to be outlined
here. Once again we closely follow the masterful account in [10].

The starting point for modern field theory is the Lagrangian density (usually just
called the Lagrangian) and the reader will need to have some knowledge of this
to feel comfortable with the potted version that follows. The simplest such item is
perhaps the Klein–Gordon Lagrangian for a scalar (spin 0) field φ :

L =
1
2
(∂µ φ∂ µ φ)− 1

2

(mc
h̄

)2
φ 2 ,

where m is the mass of the particles supposed to correspond to the field, c is the
speed of light (often set to 1), and h̄ is Planck’s constant (also often set to 1). This is
the appropriate Lagrangian precisely because the Euler–Lagrange equations

∂µ

[
∂L

∂ (∂µ φ)

]
− ∂L

∂φ
= 0

deliver the well-known Klein–Gordon equation for the field, viz.,

∂µ ∂ µ φ +
(mc

h̄

)2
φ = 0 . (13.53)

The Dirac Lagrangian for a spin 1/2 field ψ is

L = ih̄cψγµ ∂µ ψ− (mc2)ψψ , (13.54)

where γµ are the Dirac matrices and ψ is a 4-component object with ψ := ψ†γ0.
Here there is an Euler–Lagrange equation for each component of ψ or ψ , and ψ and
ψ are treated as independent. The equations

∂µ

[
∂L

∂ (∂µ ψ)

]
− ∂L

∂ψ
= 0

deliver the usual Dirac equation for ψ , viz.,

iγµ ∂µ ψ− mc
h̄

ψ = 0 , (13.55)

while the Euler–Lagrange equations
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∂µ

[
∂L

∂ (∂µ ψ)

]
− ∂L

∂ψ
= 0

deliver the adjoint of the Dirac equation for ψ , viz.,

i∂µ ψγµ +
mc
h̄

ψ = 0 .

The other kind of field commonly considered is the vector or spin 1 field, for which
the starting point is the Proca Lagrangian

L =− 1
16π

(∂ µ Aν −∂ ν Aµ)(∂µ Aν −∂ν Aµ)+
1

8π

(mc
h̄

)2
Aµ Aµ .

This is designed to deliver what is considered to be the right equation for such a
field, viz., the Proca equation

∂µ(∂ µ Aν −∂ ν Aµ)+
(mc

h̄

)2
Aν = 0 . (13.56)

It is useful to introduce the antisymmetric second rank tensor

Fµν := ∂ µ Aν −∂ ν Aµ .

The Lagrangian and field equation are then

L =− 1
16π

Fµν Fµν +
1

8π

(mc
h̄

)2
Aµ Aµ , ∂µ Fµν +

(mc
h̄

)2
Aν = 0 . (13.57)

Note that the electromagnetic field is a massless Proca field, obtained by putting
m = 0 in the above. At least, that gives us an EM field in the absence of any sources.
And in fact, all three of the above fields are called free fields, because there are no
sources around, and no interactions. A massless vector field with a source, like the
EM field in the presence of a source Jµ , has the Lagrangian

L =− 1
16π

Fµν Fµν − 1
c

Jµ Aµ ,

precisely because the Euler–Lagrange equations lead to the expected field equation

∂µ Fµν =
4π
c

Jν .

Obviously, this implies that ∂ν Jν = 0, so only sources with this property would be
appropriate here.

Notice how we talk about fields, but these equations (13.53), (13.55), and (13.56)
each refer to a mass m. Although ostensibly about fields, quantum field theory is
used to do particle physics, and the (unrenormalised) particle masses are fed in by
hand. Given a Lagrangian, it is not always immediately obvious what the mass of
the corresponding particle is. Consider for example [10]
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L =
1
2
(∂µ φ)(∂ µ φ)+ e−(αφ)2

,

for some constant α ∈ R. We have to expand the exponential and read off the mass
term as the one that goes as the square of φ . So the Lagrangian is in fact more
usefully written in the form

L =
1
2
(∂µ φ)(∂ µ φ)+1−α2φ 2 +

1
2

α4φ 4 + · · · .

The constant 1 can be dropped because it does not affect the Euler–Lagrange equa-
tions. The mass of the particle associated with this field is taken to be m =

√
2α h̄/c.

The terms in higher powers of φ are self-interaction terms. A term in φ n, n ∈ N,
would lead to a vertex with n lines coming out of it in the Feynman perturbative
expansion.

Another illustration of this method for reading off the particle mass, and a classic
for introducing the idea of symmetry breaking, as we shall see shortly, is [10]

L =
1
2
(∂µ φ)(∂ µ φ)+

1
2

µ2φ 2− 1
4

λ 2φ 4 , (13.58)

where µ and λ are positive real constants. The mass of the corresponding particle
is not µ h̄/c, however, because the mass term has to go as −φ 2, not +φ 2. Actually,
if there were no other term after that in the Lagrangian, we would be in trouble.
The Lagrangian would not be taken to describe any possible field. In the above case,
what one can do is to think of L as having the form L = T −U , the difference
between a kinetic term and a potential term, just as one finds in classical particle
dynamics (although these are really Lagrangian densities here). In the present case,

U =−1
2

µ2φ 2 +
1
4

λ 2φ 4 .

The idea now is to note that this quartic in φ has minima at φ = ±µ/λ , introduce
a new field variable η := φ ±µ/λ , and rewrite the Lagrangian in terms of this new
field:

L =
1
2
(∂µ η)(∂ µ η)−µ2η2±µλη3− 1

4
λ 2η4 +

1
4

(
µ2

λ

)2

. (13.59)

We take η to be the field actually described by L , with an associated particle of
mass m =

√
2µ h̄/c, and cubic and quartic self-interactions, corresponding to ver-

tices with three and four lines emerging from them in the Feynman perturbative
expansion.

We think of the minima of U as being something like ground states, and the
Feynman diagrams as terms in an expansion about one of these ground states. Put
like this, it all sounds a bit vague. In order to understand it, one needs to plough
through the heavy machinery of quantum field theory, plagued by its own ontologi-
cal vagaries. But the Lagrangian method is a great short cut through all that, because
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one can read off Feynman rules directly (with a little care at times), as Griffiths ex-
plains rather elegantly [10]. So for a potted version like this, we shall consider that
as satisfactory.

We have lost some symmetry in going from (13.58) to (13.59). Or rather, L is
invariant under φ → −φ , while it is not invariant under η → −η . We are going
to call this spontaneous symmetry breaking. The set of all ground states, viz.,
{−µ/λ ,+µ/λ}, is still symmetric, but we have to choose one of them to be the
actual ground state. What is spontaneous here is just the way the field is going to
drop into one of these ground states for reasons that go beyond our predictive abi-
lity, just as many other physical systems will flip into one of several available ground
states when the conditions are right. One thinks of a ferromagnet, in which all the
spins line up when environmental conditions will allow it. This then picks out some
direction in space, and 3D rotational symmetry is lost.

The symmetry under φ →−φ is a discrete symmetry. A Lagrangian with a conti-
nuous symmetry is

L =
1
2
(∂µ φ1)(∂ µ φ1)+

1
2
(∂µ φ2)(∂ µ φ2)+

1
2

µ2(φ 2
1 +φ 2

2 )− 1
4

λ 2(φ 2
1 +φ 2

2 )2 .

What we mean by this is that the symmetry group for this Lagrangian, the group of
rotations in (φ1,φ2) space, contains a continuum of elements, while the one we had
before contains only two. The potential energy function here is

U =−1
2

µ2(φ 2
1 +φ 2

2 )+
1
4

λ 2(φ 2
1 +φ 2

2 )2 . (13.60)

Now any pair (φ1min,φ2min) minimising U satisfies

φ 2
1min +φ 2

2min =
µ2

λ 2 ,

so there are infinitely many possible ground states for our field to flip into. Indeed,
they form a circle in (φ1,φ2) space. We note that the set of all possible ground states
has the rotational symmetry of the Lagrangian itself.

The symmetry is spontaneously broken by the system when it selects one mini-
mum to be the actual ground state or vacuum. In our notation, this ground state will
be

φ1min =
µ
λ

, φ2min = 0 .

We rewrite the Lagrangian in terms of new fields

η := φ1− µ
λ

, ξ := φ2 ,

which gives
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L =
[

1
2
(∂µ η)(∂ µ η)−µ2η2

]
+

[
1
2
(∂µ ξ )(∂ µ ξ )

]

−
[

µλ (η3 +ηξ 2)+
λ 2

4
(η4 +ξ 4 +2η2ξ 2)

]
+

µ4

4λ 2 .

Like the fields φ1 and φ2, the new fields are coupled by the terms in the second line,
and there are also interactions and self-interactions. For example, the term in ηξ 2

would lead to vertices in the Feynman diagrams with one η and two ξ lines coming
out of the them, while the term in η3 would give vertices with three η lines coming
out of them. But from the first line, we read off the masses of the corresponding
particles. The particles for the η field have mass mη =

√
2µ h̄/c, while the particles

for the ξ field are massless.
Note that L no longer looks very symmetrical, but it is. We have just hidden

the symmetry. What is not symmetrical is the physical situation, in which the actual
ground state of the system lies at some point on the circle of possibilities. Note also
that this exemplifies Goldstone’s theorem: when a continuous global symmetry is
spontaneously broken, we always obtain some massless scalar particles, known as
Goldstone bosons. This looks bad for the idea of spontaneous symmetry breaking,
because there are no massless bosons. At least, it seems unlikely, because such a
thing ought to show up in the form of missing energy, in contrast to a massive
boson, which might just be too massive to have been produced yet.

Now we come at last to the Higgs mechanism, which enters the scene when we
apply the idea of spontaneous symmetry breaking to a local symmetry, or gauge
symmetry. For this, we need a Lagrangian that is invariant under a spacetime de-
pendent symmetry group. We can use the last example to show how this works,
following Griffiths [10], although this presentation is rather standard. First we com-
bine the two real fields φ1 and φ2 into one complex field

φ := φ1 + iφ2 ,

whence

φ ∗φ = φ 2
1 +φ 2

2 .

With this change of notation, the Lagrangian takes the neat form

L =
1
2
(∂µ φ)∗(∂ µ φ)+

1
2

µ2φ ∗φ − 1
4

λ 2(φ ∗φ)2 .

The SO(2) symmetry we had previously becomes a U(1) symmetry, i.e., for any
eiθ ∈ U(1), the Lagrangian is invariant under the phase transformation

φ −→ eiθ φ .

We shall now tamper with the Lagrangian to make it invariant under local U(1)
transformations, i.e., under transformations of the type
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φ −→ eiθ(x)φ ,

where θ(x) is now allowed to be any reasonable function of the spacetime coordi-
nates x.

We have not motivated this move, through lack of space. Basically, one does this
by analogy with the fact that electromagnetic fields can be built into gauge invariant
theories of charged particles. This in turn comes back to the gauge invariance of
Maxwell’s theory mentioned in Sect. 2.1. It transpires that the whole theory of elec-
tromagnetism merely constitutes what is known as a gauge field, of the kind we are
about to introduce for the above example. Fortunately, there are many good books
to describe this in more detail, and [10] is an obvious choice.

In the present case, we first observe why the above Lagrangian is not invariant
under the spacetime dependent transformation. The problem is the partial derivatives
in L . The reader can check that L changes when φ → eiθ(x)φ , except in special
cases, e.g., θ a constant function. But there is a very similar Lagrangian that does
not change. We obtain this by making the replacement

∂µ −→ Dµ := ∂µ + i
q
h̄c

Aµ , (13.61)

where Aµ is a massless vector field and q is a constant. The new Lagrangian is

L =
1
2
(Dµ φ)∗(Dµ φ)+

1
2

µ2φ ∗φ − 1
4

λ 2(φ ∗φ)2− 1
16π

Fµν Fµν , (13.62)

including the usual term at the end for a massless vector field, where Fµν :=
∂µ Aν − ∂ν Aµ . We must of course mention how Aµ changes under our spacetime
dependent transformations, and the reader will already have guessed that it must
change according to

Aµ −→ Aµ − h̄c
q

∂ µ θ . (13.63)

Compare with the gauge transformations of the EM four-potential in Sect. 2.1. It is
an easy, although somewhat lengthy exercise to check that the Lagrangian in (13.62)
is indeed gauge invariant, i.e., does not change when we make the above changes.
This is called local U(1) symmetry.

We now proceed to hide this hard-earned symmetry by exactly the same process
discussed above. So we introduce new fields

η := φ1− µ
λ

, ξ := φ2 ,

and obtain the new version



372 13 Mass in Elementary Particle Physics

L =
[

1
2
(∂µ η)(∂ µ η)−µ2η2

]
+

[
1
2
(∂µ ξ )(∂ µ ξ )

]

+
[
− 1

16π
Fµν Fµν +

1
2

( q
h̄c

µ
λ

)2
Aµ Aµ

]

+

{
q
h̄c

[
η(∂µ ξ )−ξ (∂µ η)

]
Aµ +

µ
λ

( q
h̄c

)2
η(Aµ Aµ)

+
1
2

( q
h̄c

)2
(ξ 2 +η2)(Aµ Aµ)−λ µ(η3 +ηξ 2)− 1

4
λ 2(η4 +2η2ξ 2 +ξ 4)

}

+
µ
λ

q
h̄c

(∂µ ξ )Aµ +
(

µ2

2λ

)2

. (13.64)

So we still have a scalar particle η of mass m =
√

2µ h̄/c and the massless Goldstone
boson ξ , but now the previously massless gauge field appears suddenly to have
acquired a mass! Indeed, comparing the second line of (13.64) with (13.57),

mA = 2
√

π
qµ
λc2 .

This is quite an achievement, because gauge fields like Aµ , or their counterparts in
Yang–Mills field theories which deal in more sophisticated symmetry groups than
U(1), are always massless. This was one of the problems in devising the electroweak
theory, also known as the Glashow–Weinberg–Salaam (GWS) theory of electroma-
gnetic and weak interactions. It was expected to be a gauge theory, but the vector
bosons mediating the weak interactions had to be massive, partly to explain the
weakness of these interactions, and partly to explain why, unlike the photon, they
had never been observed.

Where did the gauge field mass term come from? In the original form of the La-
grangian, there was a term φ ∗φAµ Aµ which would have corresponded to a Feynman
vertex with two A lines and two φ lines emerging from it. But when the ground state
is fixed at a minimum of the potential, the φ1 field shifts, and this is what yields the
mass term for the gauge field. So ultimately, the masses of the gauge fields come
from an interaction with the Higgs field φ which only reveals itself when nature has
selected some ground state for the Higgs field to drop into.

Returning to the above expression for the Lagrangian again, the last three lines
describe interactions between the three fields Aµ , η , and ξ , or self-interactions. We
still have the massless Goldstone boson ξ that has never been observed and there is
the dubious term on the last line of the Lagrangian proportional to (∂µ ξ )Aµ , which
looks like a Feynman vertex in which a ξ turns into an A, or vice versa. The latter
suggests an incorrect identification of the fundamental particles.

So there is one last piece of trickery in the Higgs mechanism: we use the gauge
invariance of L to transform the field ξ away completely. This is called gauge
fixing. But in contrast to the gauge fixing of Sect. 2.1, this one has presumably been
done for us by nature, since we do not see the ξ particle (or its counterpart in some
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more realistic theory). Explicitly, we make the gauge transformation

φ −→ φ ′ = (cosθ + i sinθ)(φ1 + iφ2)

= (φ1 cosθ −φ2 sinθ)+ i(φ1 sinθ +φ2 cosθ) ,

but then make the choice

θ =−arctan
φ2

φ1
, (13.65)

which makes φ ′ real. Hence, ξ ′ := φ ′2 = 0, as required. The gauge field Aµ trans-
forms to some new field according to (13.63), and dropping the primes, the new
form of the Lagrangian is

L =
[

1
2
(∂µ η)(∂ µ η)−µ2η2

]
+

[
− 1

16π
Fµν Fµν +

1
2

( q
h̄c

µ
λ

)2
Aµ Aµ

]

+

{
µ
λ

( q
h̄c

)2
η(Aµ Aµ)+

1
2

( q
h̄c

)2
η2(Aµ Aµ)−λ µη3− 1

4
λ 2η4

}
+

(
µ2

2λ

)2

.

(13.66)

The very last term is just a constant and can be ignored, because it does not affect
the Euler–Lagrange equations.

So for some reason, nature chooses this gauge, the Goldstone boson does not
really exist (or rather, it is there, but the corresponding field is identically zero), and
we are left with the Higgs field η , which nobody has yet observed, and the much
desired massive gauge field Aµ . Put like that, it does not sound very convincing. But
this is just a toy model to illustrate the mechanism.

The GWS theory refers to spinor fields to represent the various fermions that
undergo weak and electromagnetic interactions, and there are three massive vector
fields and one massless vector field. The former correspond to W± and Z and the
latter to the photon. What is more, the masses of the W and Z particles are rela-
ted, and can be predicted with knowledge of another parameter. Everyone has heard
about the tremendous success of this theory, with the W and Z being found in par-
ticle accelerator experiments at the predicted masses. So it is a theory that has to be
taken seriously.

What exactly are the down sides of this model? Here is a short list:

• In the above, and in GWS theories of electroweak unification, we have to guess
the mass and self-interaction of the Higgs field. This amounts to trying out dif-
ferent forms for U in (13.60) and then testing what they predict in the accelerator.
Note, however, that the potential has to be quartic here for the resulting theory to
be renormalisable, so there are some constraints.

• The Higgs particle has not been observed yet, and we do not really know how
much energy may be required to produce it, because our theory does not tell us
its mass.
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• It is not obvious why nature chooses this gauge, or put another way, why the
Goldstone boson is unphysical.

An up-to-date review of the Higgs particle is available at the website of the Particle
Data Group [11].

It is interesting to see how Griffiths defends the last point [10]. He stresses that
the Lagrangians in (13.62), (13.64), and (13.66) all describe the same physical sys-
tem. We have merely selected a convenient gauge in (13.65) and rewritten the fields
as fluctuations about a particular ground state. The latter statement refers to the fact
that the Feynman diagrams correspond to a perturbative expansion, but the link with
real physics is somewhat obscured here by the complexity of quantum field theory.
Still, it sounds reasonable enough. Put another way, we do not have to choose a par-
ticular gauge here, but if we do not, the theory contains an unphysical ghost particle.
According to Griffiths, we eliminate the latter by this choice, but one could also say
that nature chooses the gauge, for some reason, because we do not really know what
makes the Goldstone boson unphysical.

A further gloss here is obtained by talking about degrees of freedom. While the
gauge field is massless, it has two degrees of freedom in the form of two possible
transverse polarisations, for example, but when it acquires a mass, it also acquires
another degree of freedom, in the form of a longitudinal polarisation. This extra
freedom is inherited from the Goldstone boson, which subsequently goes out of
service. This does not explain, however, but merely describes in a new language.

On several occasions throughout this book, we have been saying that the Higgs
field is also needed to explain the inertial masses of the quarks and leptons, whereas
so far we have only seen very roughly how it might explain the masses of the vec-
tor bosons mediating the weak interactions, via the Higgs mechanism. We cannot
possibly spell out all the details of that here, but we can certainly sketch how this is
done through the Lagrangian approach to field theory.

The idea is this. In the Lagrangian, we put a term like

ih̄cψγµ ∂µ ψ ,

for each quark or lepton, where ψ is a Dirac spinor field, as in (13.54). This corres-
ponds to a massless particle. But we also include a Higgs field φ and an interaction
term of the form

Lint =−αψψφ ,

for each spinor field, where α is a coupling constant. When the symmetry is sponta-
neously broken by the Higgs field selecting one of its ground states, the spinor field
Lagrangian acquires a mass term. It is as simple as that.

In a sense, the Lagrangians provide a kind of code for building field theories.
We reorganise their terms until we can interpret them physically. But from there to
the idea that moving in a Higgs field is like moving through honey, there is a long
and arduous trail through the vicissitudes of quantum field theory, which is also
rather like moving through a viscous fluid. For the moment, this is the price to pay
for a spectacularly successful set of theories that we comfortingly call the Standard
Model.
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13.5 Alternatives

The tone here is critical, as befits any scientific discussion. The reader who consults
the review of the Higgs field available at the website of the Particle Data Group [11]
will find that the problems mentioned here are taken very seriously indeed, and that
there is no shortage of potential solutions to them, all aiming to maintain the Higgs
mechanism and its offshoots as a healthy denizen of the particle garden.

But let us remember also the possibility that it may all be wrong. Anyone inves-
tigating this line of reasoning must support the burden of replacing all the successes
of the Standard Model by an alternative explanation, which is no easy task. The
first problem would be to explain the masses of the intermediate vector bosons W±
and Z. Note here that there are alternatives. One such is the spin gauge theory of
Chisholm and Farwell [38–43].

It will be worth sketching the way fermion masses are treated here. Note, ho-
wever, that this can only be an outline sketch, because the spin gauge theories are
all built inside Clifford algebras (also known as geometric algebras), and we cannot
reduce such a vast and beautiful mathematical paradigm to the space of a few para-
graphs. But the reader can nevertheless get a qualitative glimpse beyond the Higgs
horizon.

For every finite dimensional vector space with pseudometric, such as Minkowski
spacetime with Lorentz pseudometric, we can construct a finite-dimensional alge-
bra containing the vector space in a way we shall illustrate only for the spacetime
algebra. We start with a pseudo-orthonormal basis γ0,γ1,γ2,γ3 for an inertial frame,
i.e., such that

γµ · γν = ηµν ,

and generate an algebra formally using these four elements, but under the condition
{

γµ ,γν
}

:= γµ γν + γν γµ = 2ηµν . (13.67)

We take the spacetime metric to be η = (1,−1,−1,−1). The condition (13.67) thus
tells us that any two different elements of the basis anticommute, that γ0 squares to
unity, and that γi squares to −1 for i = 1,2,3. The resulting algebra is a 16D vector
space spanned by:

I {γµ} {γµ ∧ γν} {γ5γµ} γ5
1 scalar 4 vectors 6 bivectors 4 trivectors 1 pseudoscalar

where I is the unit of the algebra, the pseudoscalar is defined by

γ5 := γ0γ1γ2γ3 ,

and the wedge product is defined by
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γµ ∧ γν := γµ γν − γν γµ .

This Clifford algebra is denoted by C1,3. Today there are several good references on
this subject and every physics undergraduate would be advised to know something
about Clifford algebra (or geometric algebra) techniques [44, 45].

We can illustrate one of the key ideas of the spin gauge theories with the follo-
wing example. We begin with the Lagrangian for a massive Dirac electron represen-
ted by the Dirac spinor ψ , and an electromagnetic field represented by Aµ [42]:

L =
1
2

[
ψiγµ(∂µ − ieAµ)ψ +h.c.

]
−mψψ . (13.68)

The four objects γµ are just the linear combinations γµ := ηµν γν of the vectors γν
generating the above Clifford algebra C1,3, and the spinors themselves are taken to
be elements of some minimal left ideal in the algebra, which thus carries an irre-
ducible representation of the algebra. Everything in these theories belongs to some
Clifford algebra, including all the values of the Lagrangian density, which is thus
a Clifford-algebra-valued function on spacetime. This allows one to add together
things that would otherwise be too disparate to add together. In other words, the
beauty of it is precisely that it provides a unified framework for building theories.

The expression ∂µ − ieAµ builds in what is usually known as the minimal cou-
pling between the EM field represented by Aµ and the spinor matter field ψ . It is in
fact a covariant derivative in the language of gauge theories [compare with (13.61)].
The explanation for this terminology is simple: in contrast to the ordinary partial de-
rivative of the given field, the covariant derivative of the field transforms in exactly
the same way as the field itself under the local gauge transformations. This explains
how it can be used to build a gauge invariant Lagrangian, like the one in (13.62).
The notion of covariant derivative is key to understanding any gauge theory.

Now in the algebra C1,3, we have

γµ γµ = 4I ,

where γµ := ηµν γν as mentioned a moment ago. This is used to factorise the mass
term mψψ in (13.68), to obtain the new expression

L =
1
2

{
ψiγµ

[
I(∂µ − ieAµ)+

1
4

miγµ

]
ψ +h.c.

}
. (13.69)

We now have what Chisholm and Farwell call the extended covariant derivative

Dµ := I(∂µ − ieAµ)+
1
4

miγµ . (13.70)

Note that I(∂µ − ieAµ) is a scalar in the algebra, while γµ is a vector, but also in
the algebra, so we are allowed to add them together. This is crucial to the present
exercise, and explains the benefit of constructing everything within C1,3.
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But there is one other step we need to take in order to see what the above ploy
can do for us. If we move to a curved spacetime, we can choose a basis {γµ(x)} for
the tangent space to the spacetime manifold at each point x, and generate a Clifford
algebra at each point of spacetime, replacing the condition (13.67) by

{
γµ ,γν

}
:= γµ γν + γν γµ = 2gµν , (13.71)

where gµν(x) are the components of the curved metric g relative to the chosen basis.
We obtain a copy of the spacetime algebra C1,3 at each point of spacetime. The field
of vectors {γµ(x)} is called the frame field, and it models gravity by standard general
relativity, because it effectively encodes the metric via (13.71).

The spinor field ψ is now defined on some region of the curved spacetime, and
Aµ and γµ are on a par in our covariant derivative, because they are both spacetime
dependent. We have an analogy between the coupling constant e that tags along
with Aµ(x) and the constant m/4 that tags along with the field γµ(x). The frame
field is regarded as a physical field and the mass constant m/4 as the coupling of
the fermion field to the frame field. In this view, mass is not an intrinsic property
of a particle, but rather a kind of friction between the particle and the frame field,
making it travel at a speed less than what might otherwise be its natural speed, viz.,
the speed of light.

That description, taken almost verbatim from [42], makes it sound rather like
the Higgs field in its effect, and that reminds us that we were trying to illustrate an
alternative to the Higgs mechanism for explaining why truly elementary particles
like quarks and leptons might have inertia. Unfortunately, we cannot spell out all
the details of these fascinating theories, only summarise some of the results. The
key point is that the presence of the frame field in the extended covariant derivative
(13.70) gives rise to mass terms for the bosons mediating the weak interactions,
without the need for spontaneous symmetry breaking and the Higgs mechanism.

In fact, it does a lot more than that. It gives rise to the Einstein–Hilbert gravi-
tational Lagrangian, so in a sense, this theory unifies electroweak and gravitational
effects. (Note also that the theory adds a spin gravity term that is quadratic in the
curvature and modifies Einstein’s theory at short distances.) Better still, building
everything within the Clifford algebra C4,7, it is possible to unify electroweak, gra-
vitational, and strong SU(3) interactions, by imposing a mathematical condition on
the construction of the Lagrangian, which amounts to a kind of normalisation of the
different terms. Chisholm and Farwell even predicted the mass of the top quark in
1991 using this kind of theory [43]. Their calculated value of 152 GeV/c2 is not so
far from the the measured mass found shortly afterwards (see Table 13.1).

The aim here was not really to advocate this theory in itself, although the fact
that it can predict elementary particle masses, in contrast to the Standard Model,
ought to be a strong argument in its favour. An argument against it is that it is highly
mathematical, and the procedure of normalising the Lagrangian is physically unmo-
tivated. Even the clever trick of extending the covariant derivative is mathematically
rather than physically motivated. The above physical interpretation of an interac-
tion with the frame field comes afterwards. What this theory probably illustrates is
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that we can unify all sorts of things if we include enough mathematical complexity.
String theory is a case in point.

The approach we really want to advocate in this book is rather the opposite.
The self-force explanation of inertia is simply the hypothesis that all particles have
some kind of structure and that their resistance to acceleration comes from this. It
contrasts with the Higgs field or frame field explanations, where inertial mass is not
an intrinsic property of a particle. But it contrasts also in being physically rather
than mathematically motivated.



Chapter 14
Summary and Conclusion

One of the themes of this book is that our theories of the fundamental forces (mainly
the theory of electromagnetism in this account) are telling us things that we may not
have heard. It was Maxwell’s electromagnetism that told us about the special theory
of relativity, although there is a clear tendency today to turn things around and start
with relativity in a dry and mathematical way. We should not forget where the theory
of relativity came from. The view in this book is that Maxwell’s electromagnetism
may be able to tell us more, if only we would listen.

Chapter Two

Chapter 2 is a fast track to the really fundamental aspects of classical electroma-
gnetism, the bits that often get relegated to the ends of textbooks that one never
quite reaches, or spread out through them as notes so that they lose their coherence.
However, it closely follows the basis one would get from an exceptionally good
standard textbook, viz., the Feynman lectures. We have Maxwell’s equations and
their complete solution for any charge distribution, a dimensionally homogeneous
relativistic notation for them and related formulas, such as the Lorentz force law,
and a discussion of the key idea of retarded times. The energy and momentum of
the fields are dealt with explicitly via the energy–momentum tensor and Poynting
vector. The chapter then discusses the idealistic case of a point particle, leading to
the Lienard–Wiechert retarded potential, and several formulas for the EM fields of a
point particle with arbitrary motion. The power radiated by the particle is also exa-
mined, leading to the Larmor formula. Although EM radiation is not the key issue
in the book, it has its place because there is no classical explanation for EM radia-
tion by point particles. The remarkable case of a point charge moving with constant
velocity is also considered.

Lyle, S.N.: Summary and Conclusion. Lect. Notes Phys. 796, 379–396 (2010)
DOI 10.1007/978-3-642-04785-5 14 c© Springer-Verlag Berlin Heidelberg 2010



380 14 Summary and Conclusion

Chapter Three

This chapter burgeons out from the chapter in Vol. II of the Feynman lectures with
the same title, i.e., electromagnetic mass. It is a manifesto for the ideas presented
in this book, and at the same time a demonstration that the subject here is not some
weird offshoot of standard physics, but a straight application of the latter to a context
that may have been largely forgotten simply because it is not very tractable from a
mathematical standpoint. The connection is made between the fact that particles are
treated as mathematical points and the need for renormalisation, both in classical
and quantum physics.

The infinite energy of the Coulomb field of a point particle is the first step, follo-
wed by the finite energy when the particle is treated as a charge shell of small radius.
The momentum in the fields of such a shell is found when it moves with constant
velocity. We encounter the problem of relativistic contraction, and also an apparent
discrepancy between the energy and momentum of the EM fields of the shell when it
has uniform motion. Indeed, the momentum-derived and energy-derived EM masses
are different.

The discussion here centers around the nature of inertial mass. We do not know
why things have mass. That is, we do not know how to predict the resistance so-
mething will show to being accelerated, which is quantified by its inertial mass. In
elementary particle physics, some particles are indeed generally considered to be
elementary, in the sense of not being composed of anything smaller, e.g., all the
leptons (electron, muon, taon, their corresponding neutrinos, and all the associated
antineutrinos), but also all the quarks (three generations, three colour charges for
each, and all their associated antiparticles). The masses of all these particles must
simply be fed into the Standard Model of particle physics as parameters whose va-
lues we attempt to provide experimentally.

Then there are an enormous range of bound state particles, built up from the ele-
mentary particles. The inertial mass of such a particle is found by adding up the
relativistic masses of the component particles, adjusted for whatever kinetic energy
they may have within the system, and including the binding energies in an appro-
priate way. It is interesting to ask students of physics why one should add in kinetic
energies of constituents, or binding energies, divided by c2. An easy answer would
just be that it is an application of E = mc2. Here we have something like a principle
from special relativistic dynamics, and as a principle, it requires no further explana-
tion. One of the aims of this book is precisely to explain this feature of the inertial
mass of a bound state.

But how does the Standard Model explain the inertia of the truly elementary
particles? The answer is the Higgs mechanism. The Standard Model predicts the
existence of the Higgs boson, although it has not yet been detected. In popular ac-
counts, moving through the Higgs field is rather like trying to move through honey.
The particle gets its inertia from the outside, as it were, rather than from any intrin-
sic structure. The analogy is not perfect, however, because viscosity also opposes
uniform velocities, while the Higgs field presumably does not. One problem with
the Higgs particle is that the theory cannot tell us what energy will be required of
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the particle accelerator that is to generate it, so the only solution is to keep ramping
up the energy and hope that it will eventually be found. Since increasing the energy
is something that we would have done anyway, out of pure curiosity, there is nothing
to be lost by this strategy. But it does raise the question as to whether we should not
have alternative theories up our sleeves, just in case the Higgs particle never shows
up. In this book, we revive the old bootstrap idea that there may in fact be no ele-
mentary particles, and that it is the very structure of each particle that causes it to
resist its acceleration.

And so we come to the idea of self-force: any extended charge distribution will
exert EM forces on itself when accelerated. In simple cases, one finds that these
forces always lie exactly along the direction of acceleration, either opposing or as-
sisting. This means that they can be considered as contributing to the inertia of the
system, either negatively or positively. This is an old idea: the bootstrap effect. It is
definitely there. Even in modern particle physics, hidden away in the quantum theo-
retical formalism. One crucial feature of the self-force is that it requires the system
to be accelerated, i.e., there is no self-force when the system merely has a uniform
velocity.

In Chap. 3, we consider the EM self-force of a charge shell when it is accelera-
ted, as discussed in the Feynman lectures. We show how this force contains a term
that can be considered to renormalise the inertial mass of the system, and another
that powers its EM radiation, first step toward the Lorentz–Dirac equation, which
attempts to adjust the Lorentz force law so that it takes into account the radiation
reaction force. Finally, we describe a very simple system that can be used to make
EM self-force calculations: a charge dumbbell, consisting of two point charges, or
two small charge shells, of like or unlike charge, held a certain distance apart by
some unspecified binding effect.

Chapter Four

This is an excursion into general relativity, to show that, in a quite trivial way, EM
contributions to inertia must contribute equally to passive gravitational mass, i.e., the
measure of how much an object will be attracted gravitationally to another object.
There is a discussion of the way the general and experimentally well established
equivalence of inertial mass and passive gravitational mass is used in Newtonian
theory and becomes a founding experimental observation for general relativity itself,
something which makes the above discovery look somewhat circular! On the other
hand, if all inertia comes from self-forces, then the strong equivalence principle
used to transfer non-gravitational bits of physics to general relativity combines with
our theories of the other forces of nature to provide a physical explanation for this
famous equivalence of inertial mass and passive gravitational mass.

What we propose is a new law, viz.,
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∑
fields

Fself +Fsupp = 0 (14.1)

which would replace Newton’s second law F = ma and its direct extensions to GR
with the help of SEP. Newton’s second law in its usual form follows from (14.1) by
analysing the self-forces into some multiple of the four-acceleration, and the whole
problem of the research program suggested in this book is to show that this is always
possible, not just for EM forces, but for the other forces too, and then to show that
there is no other mechanical mass. So a dynamical law, viz., (14.1), is still necessary
here, but from it, at least in the case where the inertia is entirely due to self-force
effects, we can deduce results that were merely imposed previously.

For one thing, we understand physically why a supporting force is needed to
oppose free fall, namely to balance self-forces. In GR as it is usually presented,
the supporting force is needed because the particle has non-zero four-acceleration,
but we do not know why a non-zero four-acceleration should require a (supporting)
force any more than we know why an acceleration should require a force in Newto-
nian physics.

Another point is that self-forces make a distinction between uniform velocities
and changing velocities. The self-force is zero when the particle has a uniform ve-
locity, and only becomes non-zero when the particle velocity is changing. So we
understand from (14.1) why no force Fsupp is required on the particle to keep it in
free fall. And we understand the contrast between Newton’s first and second laws,
in the same way as the self-force idea explains this contrast in Newtonian physics.

Some authors claim that Einstein’s theory actually explains inertia, because the
geodesic equation follows from Einstein’s equations. This view is refuted here. Even
in those cases where geodesic motion does follow for a test particle, which requires
drastic assumptions about the particle, it is clear that we feed in everything we ge-
nerally assume about inertia in the form of the action. It is also argued that the
strong equivalence principle is essential for understanding motion in general relati-
vity, even when no external forces act on a system (free fall).

It is noted that the equivalence of active and passive gravitational mass is not
explained by self-force considerations and remains a mystery. In Newtonian phy-
sics, where each massive object attracts each other massive object in a symmetri-
cal way, this equivalence looks reasonable enough. However, in GR, gravitational
forces are replaced by curved spacetime, and active gravitational mass goes into an
energy–momentum tensor that acts as a source for curving. The whole issue of this
previously natural-looking equivalence is obscured.

There is a brief discussion of Mach’s principle and the Brans–Dicke theory. The
aim is to see why general relativity does not implement the Machian program, and
why the Brans–Dicke extension of general relativity does not explain inertia, be-
cause it still basically assumes the geodesic principle.

Of course the view advocated here is that one might make better progress in
explaining inertia by paying more attention to the fact that test particles are not likely
to be well modelled by mathematical points. We discuss the concrete example of the
spinning particle and the effect of curvature on its motion. A similar effect occurs
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when the particle is a source of some classical force field, typically electromagnetic.
The spatially extended particle then exerts forces on itself and in simple cases it can
be shown that these forces oppose acceleration in flat spacetime and explain why a
force is needed to keep the particle off a geodesic in curved spacetime. If all inertia
were due to these self-forces, the geodesic equation, or relevant extension of F = ma,
would then be replaced by an equation of the form ∑F = 0, where the F summed
over include self-forces.

Treating elementary particles like electrons as spatially extended does not make
it easier to model them physically, and the point particle approximation has proven
its worth in many ways. The idea in this book is not to reject all the successes of
point particle models. And furthermore, we only consider classical theory here, so
the wonderfully successful world of quantum theory barely gets a mention. But the
origin of inertia is nevertheless worth the detour, and once a classical explanation
is found, there is no obvious reason why a quantum version of it should not be
constructed.

Chapter Five

Chapter 5 is a key chapter of the book, because we get down to some concrete cal-
culations using a very simple extended charge distribution, viz., a charge dumbbell.
The beauty of this is that one can actually evaluate the energy and momentum in
the fields of the system, and even the EM self-force, using the Lienard–Wiechert
formula exposed in Chap. 2.

First, regarding energy, it is shown how the energy-derived EM mass gets two
contributions, one from its smallest structure, viz., the tiny shells of charge at each
end, and another from its larger structure, of dimension equal to the separation bet-
ween the two shells, which is of course basically due to an interaction between the
two shells. This suggests that, for a Coulomb type of potential, ever smaller structure
will contribute ever greater EM mass.

We calculate the momentum in the fields of the system when it is moving with
constant velocity along its axis. Once again, most of the momentum comes from the
smaller structure of the charge shells, but there is a contribution due to interference
between the fields of the two shells which is inversely proportional to the distance
between them. If particles have a hierarchy of structure, a Coulomb type of potential
will lead to a hierarchy of mass contributions that is inversely proportional to the
spatial dimensions of the level of structure.

We carry out both non-relativistic and relativistic calculations. The latter is in-
teresting for several reasons. To begin with, we have to make assumptions about
the shape of the system when it is moving. The shells become ellipsoids and the
distance between them is assumed to contract by the usual relativistic factor. Those
may seem reasonable assumptions when the system has uniform velocity, but they
are assumptions. They depend on what holds each shell together as a shell, and they
depend on what holds the two shells in tandem. One assumption that would presu-
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mably imply this is that all the forces within the system are described by Lorentz
symmetric theories. The EM forces are, but what about the binding forces that we try
to avoid considering explicitly? Of course, we expect them to be Lorentz symmetric,
whatever they are. What is important is to see that even the mysterious relativistic
contraction comes about because of dynamical things occurring in our systems, a
point that is almost taboo in the world of physics, and particularly the philosophy of
physics.

Another interesting point is that the momentum-derived EM mass contains a
gamma factor. It increases in precisely the way we are told in the special theory
of relativity, without explanation, that inertial mass should increase with speed. Of
course, explanation is not considered necessary, because this is viewed as a frame-
dependent illusion by many. So for that matter is the relativistic contraction. After
all, if it is the observer that goes into uniform motion, rather than our system, she will
find that the mass of our system has increased, while nothing has happened to the
system to explain why that should be. So there is no explanation. And she will find
that the system has contracted spatially, while nothing has happened to the system
to explain that. Once again, there is no explanation for the relativistic contraction. It
is just a matter of consistency, something which Minkowskian geometry deals with
very effectively.

The view here is that Minkowskian geometry provides us with one way of un-
derstanding things, but that alongside it, there is another way that is not at all fashio-
nable. We may also consider what happens to the system as it is accelerated relative
to some given inertial frame. The philosophers do not like this, even if the given
inertial frame can be any frame, and even if we realise that each frame involves ta-
king different spatial cross-sections as hyperplanes of simultaneity, so that we are
aware of taking a parochial view by our choice. They say that we miss something,
even if we keep the Minkowski spacetime view alongside. The present view is that,
on the contrary, we miss something if we forget to describe what is happening to
things relative to previously chosen inertial frames.

Actually, in the Minkowski view, nothing happens. The whole notion of some-
thing happening depends on first choosing an inertial frame. But once we do that,
we can talk about what happens, and it is interesting. We can talk about what is hap-
pening within our dumbbell system when it accelerates. We can perhaps understand
why it ends up contracted, and if its mass were entirely due to the momentum of the
EM fields it creates, we would be able to say that it has inertia precisely because a
certain kind of EM field has to be created if we want to get it moving. But we have
to free ourselves of the block universe dogma of Minkowski spacetime, no matter
how admirable it may be, in order to talk in this way.

A worrying point that has led to much debate is the discrepancy between energy-
derived and momentum-derived EM masses. This is illustrated by the charge dumb-
bell. The energy-derived mass is e2/4dc2, where d is the spatial separation of the
two shells, while the momentum-derived mass is twice this, at least when the system
moves along its axis. But when we calculate the momentum-derived mass for mo-
tion perpendicular to the system axis, we find that the discrepancy disappears. One
significant point here is that the momentum-derived mass of a non-spherically sym-
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metric system like this will depend on the direction of motion relative to its shape.
The other point is that we need to explain this discrepancy in the one case and its
disappearance in the other.

We also discuss neutral systems, when the charge shells at the ends of the dumb-
bell have equal and opposite charges. We find something very important here. The
momentum-derived EM mass still gets the equal contributions from each shell, but
the interference term inversely proportional to the spatial separation d between them
is now negative! This level of structure decreases the inertia of the system. But of
course, this is exactly what one would expect. The EM binding energy required
to put each shell together is positive, because one must force the like charges to
concentrate, while the EM binding energy to bring one shell close to the other is
negative, since they attract. But why should the latter fact reduce the inertia? Well,
we know from relativistic dynamics that the binding energy of a bound system must
be included in its inertial mass, because E = mc2.

The present view is that this is hardly an explanation, merely a rule of thumb
that happens to work perfectly for some deeper reasons. The point is that the system
exerts an EM force on itself when we try to accelerate it. For like charges on the
shells, that self-force opposes the acceleration, while for opposite charges, it assists
acceleration. But note that this situation reminds us that there must be other forces in
the system, whether it carries a net charge or is neutral. There must be binding forces
of another kind, and there is every chance that they too will lead to self-forces under
accelerations, and contribute in different ways to the inertia of the system. Indeed,
this is why there is a discrepancy between energy-derived and momentum-derived
EM masses. It turns out that the discrepancy should indeed be there when only the
EM effects are taken into account, something discussed at length later. The point is
that the total inertia is the result of all the forces at work within the system (and of
course maybe other effects too).

There is a brief discussion of the pions. Feynman uses the spherical shell model
to explain the mass difference between the charged pions on the one hand and the
neutral pion on the other. Here we use a better (although still very primitive) model,
in which the pion is a dumbbell with a quark at one end and an antiquark at the other.
This reminds us that the neutron is also supposed to be made of quarks, so there is
no difficulty understanding how there might be an EM contribution to its inertia,
although very hard indeed to work out for such a three-body system. The neutron is
more massive than the proton by a small amount. There is no obvious reason why
that difference should not be due to EM effects.

Chapters Six to Nine

Self-forces are calculated in Chaps. 6–9 for four different motions of the charge
dumbbell:

1. Linear acceleration perpendicular to the system axis.
2. Linear acceleration along the system axis.
3. Circular orbit with velocity perpendicular to the system axis.
4. Circular orbit with velocity along the system axis.



386 14 Summary and Conclusion

The calculations are difficult and involve approximation. In each case, we use the
Lienard–Wiechert fields to calculate the EM force exerted by each charge on the
other, now treating the charges as occupying mathematical points, and simply add
those two forces together to get a self-force. We then expand this self-force as a
power series in the separation d between the charges.

In the second case the acceleration and velocity both lie along the system axis,
while in the first, they both lie perpendicular to it. In each case, for like point charges,
the leading term in the self-force, going as 1/d, opposes the acceleration, i.e., it
acts along the line of the acceleration, but in the opposite direction. The self-force-
derived mass is e2/2dc2 for case 2 and e2/4dc2 for case 1, agreeing in each case with
the momentum-derived mass, and even agreeing with the energy-derived mass in
case 1. It is a significant fact that momentum-derived and self-force-derived masses
agree in each case. The discrepancy with the energy-derived mass, when it occurs,
is due to not taking other forces into account. But the momentum in the EM fields
is put there by a force overcoming the self-force, and this is why mSFDM

EM = mMDM
EM .

For case 1, it is shown how to renormalise the mass of the system so as to absorb
the O(d−1) term into any other inertial mass the system may have. We basically
have to rewrite the Lorentz force law. Even the relativistic gamma factor works
out correctly to allow this reorganisation of the equation of motion. Likewise in
case 2. Once this term has been absorbed into the so-called mechanical mass term
(assuming there is one), we can allow d → 0, regardless of the fact that the bare
mechanical mass would have had to have been infinite itself in order to end up with
a finite resulting inertial mass. This is the miraculous renormalisation procedure,
still required in quantum field theory.

We also understand from this that the self-force contribution to the inertial mass
expressed in the renormalisation equation will actually vary in the way inertial mass
is supposed to vary with speed in the special theory of relativity. This was discovered
before the advent of the fully fledged relativity theory. With hindsight one might say
that this had to happen because Maxwell’s theory, from which this contribution was
derived, is Lorentz symmetric, and of course it does not matter whether one is aware
of that when deriving this result. However, the complexity of the calculations and the
arbitrariness of the structure of our toy electron make this result something less than
obvious. To put it another way, one might say that we have here an explanation as
to why inertial mass should increase as predicted by relativity theory when a system
moves faster: it is because the self-forces within the system increase the way they
do, at least as far as the self-force contributions to the inertial mass are concerned.

For case 1, we also calculate the term in the self-force going as d0. This term
cannot be absorbed into the inertial mass, and it clearly remains even if we let the
system size tend to zero. The point is that this term is a radiation reaction, i.e., a
force back on the system due to the fact that it radiates EM energy, like any charge
accelerating relative to an inertial frame. But note that there is no explanation for
why a point charge should radiate in this way. Put another way, the self-force expla-
nation for the source of this radiated energy when the charge has spatial extent is lost
when it is treated as a point. As pointed out by Feynman [2], when a radio antenna
is radiating, the forces come from the influence of one part of the antenna current on
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another. In the case of a single accelerating electron radiating into otherwise empty
space, there is only one place the force could come from, namely, the action of one
part of the electron on another.

In case 2, for acceleration along the system axis, we also encounter the problem
of rigidity. Without a model for the binding force that holds the system together,
and without saying how the system is accelerated, we cannot say what the separa-
tion between the charges will be. The same problem occurs for any extended charge
distribution under acceleration, e.g., the charge shell. The standard assumption is a
rigidity assumption. For example, most commentators assume that the charge shell
will always look spherical in its instantaneous rest frame. This is discussed at length
in Chap. 12. A slightly simpler simplifying assumption is made for the charge dumb-
bell.

Cases 3 and 4 above are designed to put the self-force idea to a rather severe test.
In case 3 the acceleration is along the system axis, while the velocity is normal to
it, and in case 4, the acceleration is normal to the system axis, while the velocity
lies along it. The four cases thus cover all possibilities, and in each case, the EM
self-force is found to oppose the acceleration, thereby contributing to the inertia
of the system. Given the complexity, particularly of the last two calculations, this
suggests a general result. And indeed, it was shown by Dirac in 1938 [3] that one
could always renormalise the mass in the equation of motion of a charged particle.
Dirac was in the process of deriving the Lorentz–Dirac equation, which also takes
into account the radiation reaction, but leads to anomalies.

But the point is that something about the theory of electromagnetism makes the
divergent term in the EM self-force systematically oppose acceleration. And it is this
something that makes the theory renormalisable classically. It would be interesting
to identify just what it is. Could it be the fact that this is a gauge theory? After all,
it was proven in the 1970s that all gauge theories are renormalisable [34, Chap. 12].
It would also be interesting to carry out the EM self-force calculation for a general
motion of a small system, although that could prove rather difficult. Note that Dirac
employs an a priori quite different approach in his 1938 paper, using the energy–
momentum tensor of the fields, but perhaps that method could be adapted. And
finally, it would be fascinating to see how the strong force would contribute to self-
forces in bound systems. That would be quite a challenge, because we do not have a
classical theory of the strong force, only quantum chromodynamics, but one could
perhaps make use of the various potential models [33].

It should be mentioned that, in case 3, the self-force-derived mass is the same
as for case 1. These are the two cases where the velocity is normal to the system
axis. In case 4, the self-force-derived mass is the same as for case 2. These are
the cases where the velocity is along the system axis. It is also important to note
that the relativistic gamma factors work out in such a way that one can always
renormalise the mass in a relativistic context: one requires a factor of γ3 when the
velocity and acceleration are parallel, as in cases 1 and 2, and a factor of γ when
they are orthogonal, as in cases 3 and 4.

Finally, regarding these four self-force calculations, it is a very easy matter to see
that, if we replace the like charges on our dumbbell by unlike charges, the electroma-
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gnetic self-forces switch sign in each case, to actually assist the acceleration. This is
no surprise. In physics, it is well known that the negative binding energy of a bound
particle contributes negatively to the inertial mass. The mass renormalisations are
all negative then.

Chapter Eleven

Chapter 11 aims to reconcile the discrepancies between different ways of getting
the EM mass. The solution to this problem is that one must include all the forces
when working out self-force contributions to inertia. In other words, one should not
expect the energy-derived EM mass to equal the self-force-derived EM mass, except
in some special cases.

So why such a long chapter? The point is just that it has been the subject of much
debate in the literature, and is often rather carelessly taken as an argument against
the whole idea of inertia due to self-force. But the reader should be quite clear that
self-force does contribute to inertia, and that this is a fully accepted part of stan-
dard physics as we take it today, although in a heavily disguised form (the subject
of Chap. 13). Of course, there are other reasons than that. One is that alternative
formulas for the EM energy–momentum have been put forward, which are rather
ad hoc from a physical standpoint, and the present view is that they need to be cri-
tically assessed. And another point is simply that one would need to close the gap
between mSFDM and mEDM in order to get a coherent self-force theory of inertia. So
one would need to think carefully about what is missing.

What is missing are binding forces that stop our dumbbell flying apart. With these
included, and with similar binding forces stopping each charge shell from flying
apart, the energy–momentum tensor for all the fields present would be conserved
everywhere. And it is precisely the non-conservation of the EM energy–momentum
tensor that leads to the problem. The reason is that one would like to define a Lo-
rentz covariant four-momentum for the EM fields from the EM energy–momentum
tensor. So part of Chap. 11 discusses the way one would normally do this, and shows
why that leads precisely to the discrepancy mentioned above, which is basically a
deviation from Lorentz covariance.

A widely supported approach today [21, 22, 24] is to redefine the EM four-
momentum of the fields directly in a Lorentz covariant way. Whatever the reasoning
put forward to justify this, it amounts to merely taking the four-momentum in the
fields of the charge shell when it is not moving relative to some inertial frame, in
which case the momentum components are zero and there is only an energy com-
ponent, and then carrying out a Lorentz transformation of that to find out what the
four-momentum of the fields should be in some other inertial frame. With this defi-
nition, the four-momentum of the EM fields is never what the usual formula gives,
except when the charge shell is not moving.

So the reader should have no doubt whatever that this is an ad hoc move to get
a Lorentz covariant four-momentum. Naturally, this may have its uses, as claimed
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in particular by Rohrlich. But note that Rohrlich does not intend to apply his theory
to spatially extended particles. Perhaps he considers this as a form of renormalisa-
tion. But those of us who are seriously interested in spatially extended objects are
condemned to deal with all the complexity that picture involves.

Section 11.2 goes into the way one usually derives a Lorentz covariant four-
momentum from a conserved energy–momentum tensor, starting with an analogous
and easier problem, namely the derivation of a Lorentz invariant charge from a
conserved current density. All this is done with some rigorous integration theory
using differential forms. The notorious discrepancy at issue in the present discus-
sion is then derived as an integral that really should be there when one attempts to
get a four-momentum from a non-conserved energy–momentum tensor.

Section 11.3 considers a challenge by Boyer [23] that is fully supported here. He
shows very clearly why Rohrlich’s approach loses the natural physical interpretation
of what is happening in the case of a spatially extended object like the charge shell.
And the present view is that one is compelled to adopt the type of interpretation pro-
posed by Boyer if committed to non-pointlike particles. We discuss in detail Boyer’s
thought experiment in which the shell forms by collapse from infinity. One reason
is that it involves a great deal of interesting theory of the kind that one would have
to take seriously in order to understand spatially extended particles. Section 11.3.6
is important because we explain why one should expect a discrepancy for longitu-
dinal motion of the charge dumbbell, but no discrepancy for transverse motion. The
explanation relies on mention of the binding forces required to stabilise the system.

Section 11.4 shows exactly why Rohrlich’s redefinition of the four-momentum
works, and why it should be viewed as a contrived solution, while Sect. 11.5 explains
how this redefinition can be considered as derived from an energy–momentum
tensor by integration, but reveals a hidden assumption, namely, that the energy–
momentum tensor has to be static. This would rule out dynamic models for our
spatially extended particle.

Section 11.6 moves on from the collapsing shell idea and starts to consider bin-
ding forces in a more realistic scenario. One approach to show how cohesive forces
can save the day is to define them directly as the forces that would be required to
balance electromagnetic repulsive forces on the sphere, viz.,

f µ
coh :=−∂αΘ αµ

em ,

which would be zero if the energy–momentum tensor of the electromagnetic fields
were conserved. In whatever frame we examine things, we now find that the cohe-
sive forces impart a 4-momentum Pµ

coh to the system. It happens to be zero in the
rest frame of the charged shell, but it is not Lorentz covariant. On the other hand,
the total 4-momentum due to these forces and the electromagnetic fields (the sum
of the two objects Pµ

coh and Pµ
em) is a 4-vector, and it is equal to

Pµ
coh +Pµ

em = mevµ ,
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where vµ is the 4-velocity of the shell in the given frame and me is the electroma-
gnetic mass defined from the Coulomb energy in the electric field around the shell
in its rest frame.

This is, of course, a minimalist solution to the real physical problem. A more
realistic picture would be one in which the electron is made up of parts with electric
charge and with some other type of charge, source of a second field that acts to hold
the thing together against the Coulomb repulsion of the charged elements. The total
energy–momentum tensor for the system would contain contributions from both
types of field and it would be conserved. The total 4-momentum of the two fields
defined in the usual way from the total energy–momentum tensor would therefore
be Lorentz covariant. The inertial mass of the system would contain contributions
from both the electromagnetic self-force and the self-force arising from the other
kind of field.

This is a model in which the electron has spatial structure in any Lorentz frame.
If one assumes the electron to be a point charge, or if one wishes to take the point
limit, the cohesive forces do seem to be rather superfluous. Presumably, this is what
motivated Rohrlich to go to such lengths to defend what is actually a totally artificial
ploy for defining a Lorentz covariant 4-momentum for the electromagnetic fields.

Chapter Twelve

Chapter 12 faces the problem of approximating the shape of a spatially extended ob-
ject when it is accelerating. In discussions of charge shells, usually assumed sphe-
rical in their rest frame, the tradition has been, and still is [7], to make a rigidity
assumption, i.e., the sphere is assumed always to look spherical in its instantaneous
rest frame. The reasons for calling such an object rigid are examined in detail from
an unusual perspective, and the whole idea is criticised.

The main point for the purposes of this book is that the shape of such an ob-
ject will depend on the balance between all the forces within it. This means that
a realistic model for the shape of the spatially extended object under acceleration
will require a realistic model for the binding forces holding it together. This would
clearly be a very tough problem indeed, so approximation would still be the order
of the day. But let us try to make better approximations.

A well known paper by Bell [5] already does something along these lines in the
case of electromagnetism. Bell considers the shape of an electron orbit around an
atomic nucleus when the latter is accelerated. The model here is pre-quantum and
ignores collapse of the orbit due to radiation losses, but it nevertheless provides a
clear physical explanation for the relativistic contraction of a moving object, where
it is often insinuated that such a contraction is in fact just an illusion. This physical
explanation says that objects contract because the EM fields of the atomic nuclei
change when the nuclei are moving, in such a way that the electron orbits shrink in
the direction of motion.
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There are other forces than the EM fields at work in matter, but all these forces
are Lorentz symmetric, and this alone should be enough to prove that all spatial
relations between components of a spatially extended object will shrink in the same
way due to the establishment of a new equilibrium when the whole thing is moving.
The shrinking will of course require a certain time to occur, but in theory one could
get quite accurate models for the shape of the object by carefully considering the
way it is held together.

It is unusual to see such a physical discussion of how the relativistic contraction
comes about. The reason is that it is superfluous in the usual principle approach
to relativity, and in particular once one postulates that spacetime is Minkowskian.
But of course, the latter postulate, which comes with a ready-made metric telling us
directly how long or short things are when moving with constant velocity relative
to our own inertial frame (assuming we are at rest relative to such a frame our-
selves), cannot tell us how long or short they are when they are themselves making
the transition between two states of uniform velocity. This does not mean that the
theory with the Minkowski postulate cannot help us there, only that we are even-
tually condemned to look at the details of the physics operating within the object
when it is accelerating.

Actually, one of the conclusions of Chap. 12 is that the rigidity assumption is a
way of proceeding without looking inside an object to see what is really going on.
The conclusion here is that this may not always be a good enough approximation,
and anyway, it is clearly much better to try to model the object in more detail. In this
connection, there is some criticism of the uncritical way semi-Euclidean frames are
used, supposedly to describe the world as modelled by accelerating observers. The
link here is this: if a linearly accelerating observer has a rigid ruler in her hand, it will
always have just the right length to measure the semi-Euclidean spatial coordinate in
the direction of acceleration. Put another way, it satisfies what is known as the ruler
hypothesis. In actual fact, the observer would have to accelerate it more carefully
than just pushing one end of it. It is shown in Chap. 12 that no object can always
behave rigidly. The way it is accelerated is important.

There is in fact no natural or preferred frame of reference for such an observer
according to the current theory of relativity, only one that is adapted in some sense
to her motion. But Bell’s paper shows by physical argument why there are such ca-
nonical frames of reference for observers with uniform velocity in a flat spacetime.
Or rather, why one might expect there to be a set of such frames related by Lorentz
transformations.

Once again all that is superfluous if one simply postulates it, which is effectively
what Minkowski spacetime does. The postulate that spacetime is Minkowskian with
its well known metric ηµν , or indeed that it is pseudo-Riemannian with a metric gµν ,
still requires consideration of the physics going on in our metrological equipment
at some point in order to connect the mathematical machine with things that are
actually measured out there. The general trend of ignoring this point is considered a
serious oversight in the present book. As discussed by several authors recently [14,
16,36,37], the metric in relativity theories gets its physical interpretation by detailed
physical arguments. At the outset one has a manifold with a rank two covariant
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tensor field g on it, and this field can be represented by a 4×4 matrix field gµν on
coordinate patches. But what do the coordinates correspond to in the real world of
our length and time measurements? How could we know that without looking at the
matter making up our measuring tools, and thinking about the theory of that matter
(as extended from pre-general-relativistic physics to the curved manifold context
by a strong equivalence principle, another essential ingredient), and then eventually
showing by this route that gµν had a chronogeometric significance?

Surely, by just postulating that interpretation of g, one is missing something,
and the view here is that it is not just a pedagogical loss, although that would be
reason enough for considering it. The fact is that one day we will have to go beyond
relativity theory and replace it by better, or more finely adjusted theories. If we work
by principle and postulate, there is a serious risk of dogma. Fortunately, physicists
tend not to be dogmatic in the detail of their work. However, some philosophers of
physics react strongly to the above ideas, and it is important to take such carefully
considered views into account, something that goes beyond the scope of this book.

Before leaving this issue, the specific example of Bell’s approach described in [5]
suggests a very interesting research problem that could help to throw more light
on the notorious discrepancy discussed in Chap. 11 between energy-derived and
momentum-derived (or self-force-derived) EM masses. One way that two unlike
charges can stay together in a spatially extended system without collapse, and wi-
thout the need for another force (at least in theory, and in a truncated classical model
that forgets radiation losses), is simply for one to orbit around the other. It would be
interesting, although presumably rather difficult, to model that with a view to obtai-
ning the energy-derived and momentum-derived EM masses. In theory, they must
come out the same here, because the EM energy–momentum tensor is conserved.

Chapter Thirteen

Chapter 13 reviews the way inertial mass is treated in elementary particle physics
today. The basic idea is this: some particles are really elementary, with no compo-
nents, while others are bound states of the elementary particles. Today, we do not
know the inertial masses of some elementary particles because we can never get
them on their own. These are the quarks. On the other hand, we know the masses of
the leptons, i.e., the electron, muon, and tau lepton, and we are beginning to know
the masses of their associated neutrinos.

But what is the mass of a bound state particle like the proton, or the pi meson?
These are made of quarks and antiquarks. Even if we knew the masses of the com-
ponents, we would still have a problem understanding the inertia of the bound state,
because masses do not just add up. For one thing, we conceive of the component
quarks as moving around within the particle, with a certain kinetic energy that must
be included in their own relativistic mass. And for another, any energy lost or gained
by the system by putting the elementary particles together has to be subtracted from
or added to the inertial mass of the system (after dividing by c2).
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But why is this? And anyway, why does an elementary particle like a quark have a
bigger inertial mass when it is moving? These are questions we no longer really ask
today. Or rather, they are questions that are answered very neatly by some principles:
the principles of relativity. The great thing is that we know exactly how the inertial
mass of an elementary particle changes with its speed, and we know exactly how
much mass to add or subtract to account for binding energy within a bound state
particle. So in a very real sense, we do not need to ask why. This is instrumentalism.

Section 13.1 traces through an elementary presentation of special relativistic dy-
namics to see how far we go towards explaining these phenomena. We see how the
notion of Lorentz symmetry can guide us to a new dynamical equation, which main-
tains something of Newton’s way, and we identify the hypothesis that underlies it,
namely a relation between the three-force as we knew it before relativity and the co-
ordinate time rate of change of the quantity m0γu, where m0 is the inertial mass of
the particle when it is not moving, u is the coordinate three-velocity of the particle,
and γ(u) is the usual function. Lorentz symmetry may allow us other possibilities,
but this is the obvious one. And it gives a result not so different from the F = ma
that Newton proposed.

But the big difference is that, with the new equation of motion, the faster the
particle is moving, the less it will be accelerated by a given force. This prediction
from the bold hypothesis of relativistic dynamics is borne out. Particles have more
inertia when they get moving. We do not know why, and we do not ask why. The
theory works, and that is enough. Of course, why questions sometimes lead to ex-
planations, but those explanations themselves depend on hypotheses, so maybe it is
reasonable enough to stop here. After all, what more do we want than to predict?
If we have evolved to reason with nature, then it is because good predictions have
allowed more of our genes for reasoning and prediction to get through.

Those are the hard facts. But some of us have genes for asking why even when
the theory makes good predictions. This is very likely useful, the day the prediction
is not so good and we need to improve the theory. So what does the bootstrap idea
have to say about this? We have discovered that the momentum in the EM fields of
a charged particle increases with the gamma factor. Actually we have rediscovered
one of the pointers that encouraged the pioneers to make the above bold hypothesis.
They were not guided by Lorentz symmetry, which requires the hindsight of Min-
kowski spacetime. And as pointed out in Sect. 6.6.1, we know why the momentum
in the fields increases in this way: it is because the self-forces within the system
increase in the way they do, at least insofar as the self-force contributions to the
inertial mass are concerned.

Here we have a parallel with the refusal today to try to explain or understand re-
lativistic contraction as a dynamical phenomenon. The point is that it is superfluous.
We get everything by postulating Minkowski spacetime and Lorentz invariant matter
theories. The same goes here. After all, is the increased inertia of a moving particle
not just an illusion? Because what would we say if it were the observer that got into
uniform velocity, so that nothing had happened to the particle? Then there could be
no cause for the observed increase in the inertial mass of the particle. So it must
be an illusion. On the other hand, if the observer sits still and the particle is accele-
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rated, then its inertial mass will increase, and we would like somehow to attribute
that effect to the accelerating agent. This is the philosophical debate. The present
view is that it is worth continuing this debate and fighting against the Minkowski
strait-jacket, if only because the Minkowski hypothesis will one day have to cede to
better principles.

One of the themes of this book is that we do not understand inertia, i.e., that
there is something to be understood and that we have not found it yet. And here is
the special theory of relativistic dynamics telling us that m := m0γ is the measure of
the particle’s inertia, and not m0. There must be a message here for those who seek
to understand why particles resist being accelerated, and in different proportions
depending on their nature and circumstances. But the usual attitude is one of instru-
mentalism, as Popper called it [31]. The theory is simply required to be empirically
adequate, in the sense of being well-supported by evidence or by the measure of its
predictive success.

Having established (13.3) on p. 314 as the best, possibly even the only way to
play the Lorentz invariance game, we then simply apply it and note that it works.
Here, surely, is a missed opportunity. We did not know why Newton’s law had the
form F = ma, and now that we find exactly how we have to adjust this to get it in
line with the principles of relativity, we do not ask why the dynamical law still has
the form (13.3), even though we have learnt something quite significant about what
contributes to inertia.

These are important points. They concern the way we understand the world
around us. But the aim of Sect. 13.1 was to lead up to a rule-of-thumb that we
usefully apply without measure, namely the adage E = mc2. It comes out of this
discussion of dynamics in a rather restricted way, and gets boosted to the boldest
hypothesis of them all. It does not matter what the form of the energy is. It could be
electrostatic, magnetic, kinetic, elastic, or any other. All energies are the same thing
as inertial mass. And reading the equation backwards, we conclude that inertial mass
is energy.

Sections 13.2 and 13.3 of Chap. 13 describe how we apply this hypothesis wi-
thout question today in elementary particle physics. The main aim is to show that
these features, viz., increased inertia of moving entities and contribution of binding
energy to the inertia of bound states, which stem directly from bootstrap considera-
tions, constitute a considerable part of the way we understand the inertia of bound
state systems, even though we no longer even pay lip service to them. There is per-
haps more detail in this chapter than necessary. The hope is that the reader will look
again at this new but nevertheless standard material of physics with the help of this
old light, and maybe discover something.

Section 13.4 races through the theory of the Higgs mechanism. This is the idea
that saves us when we ask: what explains the inertia of a truly elementary particle
that occupies only a mathematical point in space? Naturally, it cannot be something
about the inner workings of the particle, because it cannot have any. So it has to be
some kind of interaction it has with something outside. Moving through the Higgs
field, whatever that may turn out to be, is in that sense like moving through treacle.



14 Summary and Conclusion 395

So Sect. 13.4 asks what we know about the masses of those particles that are
considered to be truly elementary today. Why do different quark flavours have dif-
ferent masses? Why are there generations of quarks: (u,d), (s,c), and (b,t), getting
more and more massive? Why are there generations of leptons: e, µ, and τ, getting
more and more massive? Why do the intermediate vector bosons W± and Z have
the masses they do?

Today, the whole problem of the mediation of the weak force by massive vector
bosons is explained by the spontaneous breaking of a local (gauge) symmetry, and
this through the Higgs mechanism. The price to pay is one or more as yet unobserved
fields whose dynamics is governed by a potential with the given gauge symmetry.
This symmetry in the potential allows the field a continuum of possible ground
states, and for some reason nature has chosen one of them for it, just as the spins of
the microscopic components in a ferromagnet select some common alignment when
the conditions are right.

The gauge fields associated with the local symmetry would have behaved as
though they were massless if no particular ground state had been chosen, but when
one is selected, they behave as though they have a mass. Ultimately, they acquire
their mass through an interaction with the Higgs field in its chosen ground state. The
same goes for all the other truly elementary particles, viz., the quarks and leptons.
They would be massless if the Higgs had not dropped into some particular ground
state. But when it does, for whatever reason (one thinks of a cooling of some kind),
then they behave as though they have a mass, because they interact in a suitable way
with the Higgs field.

In this view, all the truly elementary particles are actually massless. It is just that
they behave as though they have mass when the Higgs field, which interacts with
all of them, selects one of the continuum of ground states available to it. This is
in many ways an elegant idea, underscored by a truly physical mechanism that is
actually exemplified in the world. The trouble is that we do not know enough about
this handy field, and the problem of the quark and lepton masses is replaced by the
problem of their couplings with the Higgs field, because the masses they ultimately
appear to have depend directly on those couplings.

In Sect. 13.5, we describe the spin gauge theories in order to illustrate that the
well known electroweak unification of Glashow, Weinberg, and Salaam can be
achieved without the Higgs mechanism. Otherwise this theory proposes a rather
similar idea to explain the masses of the truly elementary particles, viz., an inter-
action with some other field. Admittedly, the field in question is a known one here,
because the frame field in these theories is basically a form of the gravitational field,
usually represented by the metric in general relativity. And better, this theory has a
predictive value with regard to the masses, but via a rather mathematical principle
regarding the construction of the Lagrangian, which on the face of things does not
help us to understand physically why quarks and leptons should resist acceleration
to the various degrees we observe. So the main reason for mentioning the spin gauge
theories as far as this book is concerned is really just to point out that electroweak
unification with massive intermediate vector bosons can be achieved without the
need for a Higgs field.



396 14 Summary and Conclusion

Hopefully, some readers will baulk at the term ‘truly’ elementary. There is cer-
tainly something rather naive about the idea that any object could be perfectly re-
presented by a mathematical point, or by a mathematical curve in spacetime. It may
of course be a good approximation, making certain problems tractable, and the dis-
cussion of spatially extended charge distributions in this book, with all its difficulty
and complexity, will no doubt help to justify such an approximation. But the results
of calculations like those in Chaps. 6–9 are clearly intriguing, showing that even a
very well known theory like Maxwell’s may be able to tell us more than we have so
far heeded.

The aim here has certainly not been to reject the Standard Model out of hand,
nor to advocate a return to pre-quantum methods of calculation, or anything of the
sort. It is just intended as a reminder that, if all particles do in fact have substructure,
then there is a wealth of explanation available there for the inertia of such entities.
Any spatial distribution of sources for some fundamental force will exert a force on
itself when it is accelerated, and what would be interesting is to investigate whether
such a bootstrap effect would always contain an inertial component to highest order,
opposing the acceleration.

Since this question is intimately related with the possibility of mass renormali-
sation in the classical context, and since all gauge theories are, it appears, renorma-
lisable, then maybe there is a connection between the nature of self-forces due to
gauge fields and the fact that massive particles are massive, without the need for ad
hoc external fields to slow them down by interaction.
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